login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244725 a(n) = 5*n^3. 10
0, 5, 40, 135, 320, 625, 1080, 1715, 2560, 3645, 5000, 6655, 8640, 10985, 13720, 16875, 20480, 24565, 29160, 34295, 40000, 46305, 53240, 60835, 69120, 78125, 87880, 98415, 109760, 121945, 135000, 148955, 163840, 179685, 196520, 214375, 233280, 253265 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

G.f.: 5*x*(1 + 4*x + x^2)/(1 - x)^4.

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.

MATHEMATICA

Table[5 n^3, {n, 0, 40}] (* or *) CoefficientList[Series[5 x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 40}], x]

PROG

(MAGMA) [5*n^3: n in [0..40]] /* or */ I:=[0, 5, 40, 135]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]];

(PARI) a(n)=5*n^3 \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. similar sequences of the type k*n^3: A000578 (k=1), A033431 (k=2), A117642  (k=3), A033430 (k=4), this sequence (k=5), A244726 (k=6), A244727 (k=7), A016743 (k=8), A244728 (k=9), A244729 (k=10), A016767 (k=27), A016803 (k=64),  A016851 (k=125), A016911 (k=216), A016983 (k=343), A017067 (k=512),  A017163 (k=729), A017271 (k=1000), A017391 (k=1331), A017523 (k=1728).

Sequence in context: A029538 A153795 A015874 * A209346 A027264 A025214

Adjacent sequences:  A244722 A244723 A244724 * A244726 A244727 A244728

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Jul 05 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 08:54 EST 2018. Contains 299330 sequences. (Running on oeis4.)