login
A244725
a(n) = 5*n^3.
11
0, 5, 40, 135, 320, 625, 1080, 1715, 2560, 3645, 5000, 6655, 8640, 10985, 13720, 16875, 20480, 24565, 29160, 34295, 40000, 46305, 53240, 60835, 69120, 78125, 87880, 98415, 109760, 121945, 135000, 148955, 163840, 179685, 196520, 214375, 233280, 253265
OFFSET
0,2
FORMULA
G.f.: 5*x*(1 + 4*x + x^2)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.
MATHEMATICA
Table[5 n^3, {n, 0, 40}] (* or *) CoefficientList[Series[5 x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 40}], x]
PROG
(Magma) [5*n^3: n in [0..40]] /* or */ I:=[0, 5, 40, 135]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]];
(PARI) a(n)=5*n^3 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. similar sequences of the type k*n^3: A000578 (k=1), A033431 (k=2), A117642 (k=3), A033430 (k=4), this sequence (k=5), A244726 (k=6), A244727 (k=7), A016743 (k=8), A244728 (k=9), A244729 (k=10), A016767 (k=27), A016803 (k=64), A016851 (k=125), A016911 (k=216), A016983 (k=343), A017067 (k=512), A017163 (k=729), A017271 (k=1000), A017391 (k=1331), A017523 (k=1728).
Sequence in context: A029538 A153795 A015874 * A319098 A209346 A027264
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jul 05 2014
STATUS
approved