OFFSET
0,2
COMMENTS
Compare to Sum_{k=0..n} [x^k] 1/(1-x)^(6*n) = binomial(7*n,n).
Compare to Sum_{k=0..n} [x^k] 1/((1-x)*(1-2*x)^2)^n = binomial(4*n,2*n).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..318
Vaclav Kotesovec, Recurrence (of order 11)
FORMULA
a(n) ~ c * d^n / (sqrt(Pi) * n^(3/2)), where d = 32.201406653616068490560634175718122449630172934... is the root of the equation 67228 - 48020*d - 199969*d^2 + 287875*d^3 - 109375*d^4 + 3125*d^5 = 0, and c = 14.332013639348773543921130720591338... . - Vaclav Kotesovec, Jul 04 2014
EXAMPLE
G.f.: A(x) = 1 + 34*x + 889*x^2 + 22344*x^3 + 568750*x^4 + 14812084*x^5 +...
ILLUSTRATION OF INITIAL TERMS.
If we form an array of coefficients of x^k in A(x)^n, n>=0, like so:
A^0: [1], 0, 0, 0, 0, 0, ...;
A^1: [1, 34], 889, 22344, 568750, 14812084, ...;
A^2: [1, 68, 2934], 105140, 3447213, 108026800, ...;
A^3: [1, 102, 6135, 287692], 11718441, 437745882, ...;
A^4: [1, 136, 10492, 609304, 29801822], 1301836088, ...;
A^5: [1, 170, 16005, 1109280, 63453080, 3183364624],...; ...
then we can illustrate how the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals C(7*n,3*n):
C( 0, 0) = 1 = 1;
C( 7, 3) = 1 + 34 = 35;
C(14, 6) = 1 + 68 + 2934 = 3003;
C(21, 9) = 1 + 102 + 6135 + 287692 = 293930;
C(28,12) = 1 + 136 + 10492 + 609304 + 29801822 = 30421755;
C(35,15) = 1 + 170 + 16005 + 1109280 + 63453080 + 3183364624 = 3247943160; ...
PROG
(PARI) /* By Definition (slow): */
{a(n)=if(n==0, 1, ( binomial(7*n, 3*n) - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j/1!)^n + x*O(x^k), k)))/n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* Faster, using series reversion: */
{a(n)=local(B=sum(k=0, n+1, binomial(7*k, 3*k)*x^k)+x^3*O(x^n), G=1+x*O(x^n));
for(i=1, n, G = 1 + intformal( (B-1)*G/x - B*G^2)); polcoeff(x/serreverse(x*G), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 03 2014
STATUS
approved