login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244069
Consider a number of k digits n = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + … + d_(2)*10 + d_(1). Sequence lists the numbers n such that Sum_{i=1..k-1}{phi(Sum_{j=1..i}{d_(j)*10^(j-1)})} = Sum_{i=1..k-1}{sigma(Sum_{j=1..i}{d_(k-j+1)*10^(i-j)})} (see example below).
3
11, 21, 53, 75, 83, 95, 211, 506, 523, 708, 908, 932, 955, 1008, 5086, 6535, 7272, 7557, 9126, 20534, 31165, 51301, 52695, 71665, 73713, 85173, 90902, 93026, 93565, 210021, 313370, 330173, 406945, 423775, 521427, 633190, 728687, 850123, 926281
OFFSET
1,1
COMMENTS
No single-digit terms are permitted. - Harvey P. Dale, Mar 08 2015
EXAMPLE
If n = 423775, starting from the least significant digit, let us cut the number into the set {5, 75, 775, 3775, 23775}. We have:
sigma(5) = 6;
sigma(75) = 124;
sigma(775) = 992;
sigma(3775) = 4712;
sigma(23775) = 39432.
Then, starting from the most significant digit, let us cut the number into the set {4, 42, 423, 4237, 42377}. We have:
phi(4) = 2;
phi(42) = 12;
phi(423) = 276;
phi(4237) = 3996;
phi(42377) = 40980.
Finally, 6 + 124 + 992 + 4712 + 39432 = 2 + 12 + 276 + 3996 + 40980 = 45266.
MAPLE
with(numtheory); P:=proc(q) local a, b, k, n; for n from 10 to q do
a:=0; k:=1; while trunc(n/10^k)>0 do a:=a+phi(trunc(n/10^k)); k:=k+1; od;
b:=0; k:=1; while (n mod 10^k)<n do b:=b+sigma(n mod 10^k); k:=k+1; od;
if a=b then print(n); fi; od; end: P(10^9);
MATHEMATICA
dsepQ[n_]:=Module[{idn=IntegerDigits[n], len}, len=Length[idn]-1; Total[ DivisorSigma[1, #]&/@(FromDigits/@Table[Take[idn, -k], {k, If[Last[idn] == 0, 2, 1], len}])]==Total[EulerPhi/@(FromDigits/@Table[Take[idn, i], {i, len}])]]; Select[Range[10, 10^6], dsepQ] (* Harvey P. Dale, Mar 08 2015 *)
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Jun 19 2014
EXTENSIONS
Corrected (a(18) added) by Harvey P. Dale, Mar 08 2015
STATUS
approved