Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 03 2024 10:02:08
%S 11,21,53,75,83,95,211,506,523,708,908,932,955,1008,5086,6535,7272,
%T 7557,9126,20534,31165,51301,52695,71665,73713,85173,90902,93026,
%U 93565,210021,313370,330173,406945,423775,521427,633190,728687,850123,926281
%N Consider a number of k digits n = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + … + d_(2)*10 + d_(1). Sequence lists the numbers n such that Sum_{i=1..k-1}{phi(Sum_{j=1..i}{d_(j)*10^(j-1)})} = Sum_{i=1..k-1}{sigma(Sum_{j=1..i}{d_(k-j+1)*10^(i-j)})} (see example below).
%C No single-digit terms are permitted. - _Harvey P. Dale_, Mar 08 2015
%e If n = 423775, starting from the least significant digit, let us cut the number into the set {5, 75, 775, 3775, 23775}. We have:
%e sigma(5) = 6;
%e sigma(75) = 124;
%e sigma(775) = 992;
%e sigma(3775) = 4712;
%e sigma(23775) = 39432.
%e Then, starting from the most significant digit, let us cut the number into the set {4, 42, 423, 4237, 42377}. We have:
%e phi(4) = 2;
%e phi(42) = 12;
%e phi(423) = 276;
%e phi(4237) = 3996;
%e phi(42377) = 40980.
%e Finally, 6 + 124 + 992 + 4712 + 39432 = 2 + 12 + 276 + 3996 + 40980 = 45266.
%p with(numtheory); P:=proc(q) local a, b, k, n; for n from 10 to q do
%p a:=0; k:=1; while trunc(n/10^k)>0 do a:=a+phi(trunc(n/10^k)); k:=k+1; od;
%p b:=0; k:=1; while (n mod 10^k)<n do b:=b+sigma(n mod 10^k); k:=k+1; od;
%p if a=b then print(n); fi; od; end: P(10^9);
%t dsepQ[n_]:=Module[{idn=IntegerDigits[n],len},len=Length[idn]-1; Total[ DivisorSigma[1,#]&/@(FromDigits/@Table[Take[idn,-k],{k,If[Last[idn] == 0,2,1],len}])]==Total[EulerPhi/@(FromDigits/@Table[Take[idn,i],{i, len}])]]; Select[Range[10,10^6],dsepQ] (* _Harvey P. Dale_, Mar 08 2015 *)
%Y Cf. A000010, A000203, A240894-A240903, A241207, A241502, A241503, A244068.
%K nonn,base
%O 1,1
%A _Paolo P. Lava_, Jun 19 2014
%E Corrected (a(18) added) by _Harvey P. Dale_, Mar 08 2015