login
A243254
Number of compositions of n into parts {3,4,5} when all parts 3,4 and 5 are present.
1
6, 0, 0, 12, 12, 12, 20, 30, 50, 60, 80, 120, 162, 225, 305, 401, 560, 763, 1017, 1365, 1834, 2484, 3328, 4420, 5936, 7943, 10593, 14148, 18828, 25092, 33468, 44517, 59214, 78734, 104698, 139232, 184889, 245532, 326177, 433052, 574841, 762856, 1012219, 1343160
OFFSET
12,1
COMMENTS
Compositions of n from the set {3,4,5} that can be partitioned into the equivalence classes [345][34][45][35][3][4][5], where each class is defined by the relation "all elements are present".
LINKS
Index entries for linear recurrences with constant coefficients, signature (-2, -2, 2, 9, 16, 14, -2, -29, -52, -52, -20, 34, 82, 97, 67, 7, -53, -84, -77, -43, -4, 22, 29, 23, 13, 5, 1).
FORMULA
a(n) = A017818(n-1) -A245492(n) -A245487(n) -A245527(n) -A022003(n) -A011765(n) -A112765(n).
G.f.: -(x^15 +5*x^14 +13*x^13 +24*x^12 +34*x^11 +36*x^10 +24*x^9-26*x^7 -40*x^6 -36*x^5 -18*x^4 +12*x^2 +12*x +6) *x^12 /((x-1) *(x+1) *(x^2+1) *(x^3+x^2-1) *(x^4+x^3-1) *(x^5+x^3-1) *(x^2+x+1) *(x^5+x^4-1) *(x^4+x^3+x^2+x+1)). - Alois P. Heinz, Jul 30 2014
a(n) = A017818(n) - A017817(n) - A052920(n) - A017827(n) + A079978(n) + A121262(n) + A079998(n). - Robert Israel, Aug 18 2014
EXAMPLE
a(24) = 162 = 42 + 90 + 30: the tuples are (5433333) -> 7!/5! = 42, (554433) -> 6!/2!2!2! = 90, (544443) -> 6!/4! = 30.
MAPLE
N:= 100;
C34:= Vector(N):
C35:= Vector(N):
C45:= Vector(N):
C345:= Vector(N):
C1:= Vector(N, i -> numboccur([i mod 3, i mod 4, i mod 5], 0)):
C34[3]:= 1: C34[4]:= 1:
C35[3]:= 1: C35[5]:= 1:
C45[4]:= 1: C45[5]:= 1:
C345[3]:= 1: C345[4]:= 1: C345[5]:= 1:
for n from 6 to N do
C34[n]:= C34[n-3] + C34[n-4];
C35[n]:= C35[n-3] + C35[n-5];
C45[n]:= C45[n-4] + C45[n-5];
C345[n]:= C345[n-3]+C345[n-4]+C345[n-5];
od:
A:= C345 - C34 - C35 - C45 + C1:
convert(A[12..N], list); # Robert Israel, Aug 18 2014
MATHEMATICA
CoefficientList[Series[x^12*(x^15 + 5*x^14 + 13*x^13 + 24*x^12 + 34*x^11 + 36*x^10 + 24*x^9 - 26*x^7 - 40*x^6 - 36*x^5 - 18*x^4 + 12*x^2 + 12*x +6)/((1 - x)*(x + 1)*(x^2 + 1)*(x^3 + x^2 - 1)*(x^4 + x^3 - 1)*(x^5 + x^3 - 1)*(x^2 + x + 1)*(x^5 + x^4 - 1)*(x^4 + x^3 + x^2 + x + 1)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Aug 02 2014 *)
KEYWORD
nonn,easy
AUTHOR
David Neil McGrath, Jul 30 2014
STATUS
approved