login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243254
Number of compositions of n into parts {3,4,5} when all parts 3,4 and 5 are present.
1
6, 0, 0, 12, 12, 12, 20, 30, 50, 60, 80, 120, 162, 225, 305, 401, 560, 763, 1017, 1365, 1834, 2484, 3328, 4420, 5936, 7943, 10593, 14148, 18828, 25092, 33468, 44517, 59214, 78734, 104698, 139232, 184889, 245532, 326177, 433052, 574841, 762856, 1012219, 1343160
OFFSET
12,1
COMMENTS
Compositions of n from the set {3,4,5} that can be partitioned into the equivalence classes [345][34][45][35][3][4][5], where each class is defined by the relation "all elements are present".
LINKS
Index entries for linear recurrences with constant coefficients, signature (-2, -2, 2, 9, 16, 14, -2, -29, -52, -52, -20, 34, 82, 97, 67, 7, -53, -84, -77, -43, -4, 22, 29, 23, 13, 5, 1).
FORMULA
a(n) = A017818(n-1) -A245492(n) -A245487(n) -A245527(n) -A022003(n) -A011765(n) -A112765(n).
G.f.: -(x^15 +5*x^14 +13*x^13 +24*x^12 +34*x^11 +36*x^10 +24*x^9-26*x^7 -40*x^6 -36*x^5 -18*x^4 +12*x^2 +12*x +6) *x^12 /((x-1) *(x+1) *(x^2+1) *(x^3+x^2-1) *(x^4+x^3-1) *(x^5+x^3-1) *(x^2+x+1) *(x^5+x^4-1) *(x^4+x^3+x^2+x+1)). - Alois P. Heinz, Jul 30 2014
a(n) = A017818(n) - A017817(n) - A052920(n) - A017827(n) + A079978(n) + A121262(n) + A079998(n). - Robert Israel, Aug 18 2014
EXAMPLE
a(24) = 162 = 42 + 90 + 30: the tuples are (5433333) -> 7!/5! = 42, (554433) -> 6!/2!2!2! = 90, (544443) -> 6!/4! = 30.
MAPLE
N:= 100;
C34:= Vector(N):
C35:= Vector(N):
C45:= Vector(N):
C345:= Vector(N):
C1:= Vector(N, i -> numboccur([i mod 3, i mod 4, i mod 5], 0)):
C34[3]:= 1: C34[4]:= 1:
C35[3]:= 1: C35[5]:= 1:
C45[4]:= 1: C45[5]:= 1:
C345[3]:= 1: C345[4]:= 1: C345[5]:= 1:
for n from 6 to N do
C34[n]:= C34[n-3] + C34[n-4];
C35[n]:= C35[n-3] + C35[n-5];
C45[n]:= C45[n-4] + C45[n-5];
C345[n]:= C345[n-3]+C345[n-4]+C345[n-5];
od:
A:= C345 - C34 - C35 - C45 + C1:
convert(A[12..N], list); # Robert Israel, Aug 18 2014
MATHEMATICA
CoefficientList[Series[x^12*(x^15 + 5*x^14 + 13*x^13 + 24*x^12 + 34*x^11 + 36*x^10 + 24*x^9 - 26*x^7 - 40*x^6 - 36*x^5 - 18*x^4 + 12*x^2 + 12*x +6)/((1 - x)*(x + 1)*(x^2 + 1)*(x^3 + x^2 - 1)*(x^4 + x^3 - 1)*(x^5 + x^3 - 1)*(x^2 + x + 1)*(x^5 + x^4 - 1)*(x^4 + x^3 + x^2 + x + 1)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Aug 02 2014 *)
KEYWORD
nonn,easy
AUTHOR
David Neil McGrath, Jul 30 2014
STATUS
approved