login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242496 a(n)=sum_{j=0..n} sum_{i=0..j} F(i)*L(j), where F(n)=A000045(n) and L(n)=A000032(n). 2
0, 1, 7, 23, 72, 204, 564, 1521, 4059, 10747, 28336, 74504, 195576, 512865, 1344063, 3521007, 9221688, 24148468, 63230860, 165555665, 433454835, 1134839091, 2971111392, 7778574288, 20364739632, 53315851969, 139583151799, 365434146311, 956720165544 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-2,-6,4,2,-1).

FORMULA

a(n) = A001519(n+2) - A000032(n+2) + A059841(n).

a(n) = L(n)*F(n+3) - L(n+2) + (1-3*(-1)^n)/2. - Colin Barker, May 18 2014

G.f.: -x*(3*x^2-3*x-1) / ((x-1)*(x+1)*(x^2-3*x+1)*(x^2+x-1)). - Colin Barker, May 16 2014

EXAMPLE

For n=5, 0*(2+1+3+4+7+11) + 1*(1+3+4+7+11) + 1*(3+4+7+11) + 2*(4+7+11) + 3*(7+11) + 5*11 = 204 = F(2*5+3) - L(n+2) + 0 = 233-29 = 204.

MAPLE

A242496 := proc(n)

    add(add(A000045(i)*A000032(j), i=0..j), j=0..n) ;

end proc: # R. J. Mathar, May 17 2014

MATHEMATICA

LinearRecurrence[{4, -2, -6, 4, 2, -1}, {0, 1, 7, 23, 72, 204}, 30] (* Harvey P. Dale, Oct 03 2020 *)

PROG

(PARI)

F(n) = fibonacci(n)

L(n) = if(n==0, 2, F(2*n)/F(n))

vector(30, n, sum(i=0, n-1, sum(j=i, n-1, F(i)*L(j)))) \\ Colin Barker, May 16 2014

CROSSREFS

Cf. A190173, A000045, A000032, A242300.

Sequence in context: A147972 A002223 A034563 * A048539 A240526 A018886

Adjacent sequences:  A242493 A242494 A242495 * A242497 A242498 A242499

KEYWORD

nonn,easy

AUTHOR

J. M. Bergot, May 16 2014

EXTENSIONS

Two terms corrected, and more terms added by Colin Barker, May 16 2014

Formula corrected by Colin Barker, May 17 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 18:45 EDT 2021. Contains 343137 sequences. (Running on oeis4.)