|
|
A242119
|
|
Primes modulo 18.
|
|
14
|
|
|
2, 3, 5, 7, 11, 13, 17, 1, 5, 11, 13, 1, 5, 7, 11, 17, 5, 7, 13, 17, 1, 7, 11, 17, 7, 11, 13, 17, 1, 5, 1, 5, 11, 13, 5, 7, 13, 1, 5, 11, 17, 1, 11, 13, 17, 1, 13, 7, 11, 13, 17, 5, 7, 17, 5, 11, 17, 1, 7, 11, 13, 5, 1, 5, 7, 11, 7, 13, 5, 7, 11, 17, 7, 13, 1, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
|
|
FORMULA
|
Sum_{i=1..n} a(i) ~ 9n. The derivation is the same as in the formula in A039715. - Jerzy R Borysowicz, Apr 27 2022
|
|
MATHEMATICA
|
Mod[Prime[Range[100]], 18]
|
|
PROG
|
(Magma) [p mod(18): p in PrimesUpTo(500)];
(Sage) [mod(p, 18) for p in primes(500)] # Bruno Berselli, May 05 2014
|
|
CROSSREFS
|
Cf. sequences of the type Primes mod k: A039701 (k=3), A039702 (k=4), A039703 (k=5), A039704 (k=6), A039705 (k=7), A039706 (k=8), A038194 (k=9), A007652 (k=10), A039709 (k=11), A039710 (k=12), A039711 (k=13), A039712 (k=14), A039713 (k=15), A039714 (k=16), A039715 (k=17), this sequence (k=18), A033633 (k=19), A242120(k=20), A242121 (k=21), A242122 (k=22), A229786 (k=23), A229787 (k=24), A242123 (k=25), A242124 (k=26), A242125 (k=27), A242126 (k=28), A242127 (k=29), A095959 (k=30), A110923 (k=100).
Sequence in context: A176548 A020625 A033633 * A308505 A338938 A249823
Adjacent sequences: A242116 A242117 A242118 * A242120 A242121 A242122
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vincenzo Librandi, May 05 2014
|
|
STATUS
|
approved
|
|
|
|