login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242117
The number of independent sets in a complete binary tree with n levels (i.e., with 2^n-1 vertices) in which every vertex has degree 3.
0
0, 0, 3, 24, 1680, 5317635, 66314914699608, 8947678119828215014722891024, 178098260698995011212395018312912894502905113202338936835
OFFSET
1,3
COMMENTS
For example, when n=3, there are two degree 3 vertices which do not share an edge. There are then three degree 3 (regular) independent subsets so a(3)=3. a(10) has 113 digits and is too large to include. The sequence is related to A076725, the number of independent sets in a complete binary tree.
The independent sets sought are those in the subgraph induced by the degree-3 vertices. This subgraph is a forest comprising two complete binary trees with n-2 levels each. These trees have A076725(n-2+1) independent sets each and the empty set (empty in both) is excluded here so a(n) = A076725(n-1)^2 - 1. - Kevin Ryde, Mar 10 2020
FORMULA
a(n) = (a(n-2) + 1)^4 + 2(a(n-1)+1)(a(n-2) + 1)^2 + (a(n-1) + 1)^2 - 1, with a(1) = a(2) = 0.
EXAMPLE
a(3) = (a(1) + 1)^4 + 2(a(2)+1)(a(1) + 1)^2 + (a(2) + 1)^2 - 1 = (0+1)^4+2(0+1)(0+1)^2+(0+1)^2-1 = 3.
a(4) = (a(2) + 1)^4 + 2(a(3)+1)(a(2) + 1)^2 + (a(3) + 1)^2 - 1 = (0+1)^4+2(3+1)(0+1)^2+(3+1)^2-1 = 24.
a(5) = (a(3) + 1)^4 + 2(a(4)+1)(a(3) + 1)^2 + (a(4) + 1)^2 - 1 = (3+1)^4+2(24+1)(3+1)^2+(24+1)^2-1 = 1680.
PROG
(PARI) a(n) = my(x=1, y=1); for(i=3, n, [x, y] = [(x + y^2)^2, x]); x-1; \\ Kevin Ryde, Mar 10 2020
CROSSREFS
Cf. A076725.
Sequence in context: A075655 A300551 A000856 * A047678 A047938 A297481
KEYWORD
nonn
AUTHOR
STATUS
approved