OFFSET
1,5
COMMENTS
Given a + b < 2*b < p and c < p it follows that a + b + c < 2*p then the condition reduces to a + b + c = p. - Fausto A. C. Cariboni, Sep 30 2018
Apparently a(n) = A030006(n) for 3 <= n <= 1000. - Georg Fischer, Oct 23 2018
Confirmed a(n) = A030006(n) for 3 <= n <= 4000. - Fausto A. C. Cariboni, Feb 23 2019
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..4000
Steven J. Miller, Combinatorial and Additive Number Theory Problem Sessions, arXiv:1406.3558 [math.NT], 2014-2018. See Nathan Kaplan's Problem 2014.1.4 on p. 30.
FORMULA
a(n) = (1/2)*A242089(n).
EXAMPLE
For prime(4) = 7 there is 1 triple (a,b,c) with 0 < a < b < c < 7 and a+b+c == 0 mod 7, namely, 1+2+4 = 7, so a(4) = 1.
MATHEMATICA
Table[(1/2) Length[ Reduce[ Mod[a + b + c, Prime[n]] == 0 && 0 < a < b < c < Prime[n], {a, b, c}, Integers]], {n, 40}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Jun 16 2014
EXTENSIONS
a(41)-a(50) from Fausto A. C. Cariboni, Sep 30 2018
STATUS
approved