login
A229849
Consider all primitive 120-degree triangles with sides A < B < C. The sequence gives the values of B.
6
5, 8, 16, 24, 33, 35, 39, 45, 51, 56, 57, 63, 77, 80, 85, 88, 91, 95, 105, 112, 115, 120, 143, 145, 155, 160, 161, 165, 168, 175, 187, 192, 195, 203, 208, 209, 217, 221, 224, 231, 247, 253, 259, 261, 272, 273, 279, 280, 287, 288, 299, 301, 304, 315, 320, 323
OFFSET
1,1
COMMENTS
A primitive triangle is one for which the sides have no common factor.
For n>1, A106505(n) seems to give the values of A and A004611(n) seems to give the values of C.
EXAMPLE
33 appears in the sequence because there exists a primitive 120-degree triangle with sides 7, 33 and 37.
PROG
(PARI)
\\ Gives values of B not exceeding bmax
\\ e.g. pt120b(80) gives [5, 8, 16, 24, 33, 35, 39, 45, 51, 56, 57, 63, 77, 80]
pt120b(bmax) = {
s=[];
for(m=1, (bmax-1)\2,
for(n=1, m-1,
if((m-n)%3!=0 && gcd(m, n)==1,
a=m*m-n*n;
b=n*(2*m+n);
if(a>b, b=a);
if(b<=bmax, s=concat(s, b))
)
)
);
vecsort(s, , 8)
}
CROSSREFS
KEYWORD
nonn
AUTHOR
Colin Barker, Oct 06 2013
STATUS
approved