login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241618
Number of length n+2 0..12 arrays with no consecutive three elements summing to more than 12
2
455, 3185, 22295, 145873, 980031, 6645821, 44678543, 300535053, 2025793471, 13644835113, 91879275469, 618858084619, 4168290681519, 28073432645895, 189079333842687, 1273493381875147, 8577194140275861, 57768891197339641
OFFSET
1,1
COMMENTS
Column 12 of A241619
FORMULA
Empirical recurrence of order 91 (see link above).
Empirical formula verified (see link). - Robert Israel, Sep 03 2019
EXAMPLE
Some solutions for n=5
..0....3....0....0....0....3....3....3....0....3....3....3....0....3....0....0
..6....3....0....0....0....3....0....0....3....3....0....6....0....3....3....9
..0....0....0....2...11....3....8....2....6....4....5....1....7....1....0....0
..3....0....6....8....0....0....2....0....1....4....0....0....5....1....0....1
..2....1....1....0....1....3....2....4....4....1....7....1....0....0....7....7
..2....2....4....1....1....7....3....3....4....1....0....1....5....7....0....1
..4....4....0....9....7....0....0....0....0...10....1....5....0....5....3....0
MAPLE
r:= [seq(seq([i, j], j=0..12-i), i=0..12)]:
T:= Matrix(91, 91, proc(i, j) if r[i][1]=r[j][2] and r[i][1]+r[i][2]+r[j][1]<=12 then 1 else 0 fi end proc):
U[0]:= Vector(91, 1):
for n from 1 to 40 do U[n]:= T . U[n-1] od:
seq(U[0]^%T . U[j], j=1..40); # Robert Israel, Sep 03 2019
CROSSREFS
Sequence in context: A043475 A324633 A260735 * A251337 A282232 A061544
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 26 2014
STATUS
approved