login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of length n+2 0..12 arrays with no consecutive three elements summing to more than 12
2

%I #9 Sep 04 2019 02:55:11

%S 455,3185,22295,145873,980031,6645821,44678543,300535053,2025793471,

%T 13644835113,91879275469,618858084619,4168290681519,28073432645895,

%U 189079333842687,1273493381875147,8577194140275861,57768891197339641

%N Number of length n+2 0..12 arrays with no consecutive three elements summing to more than 12

%C Column 12 of A241619

%H R. H. Hardin, <a href="/A241618/b241618.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A241618/a241618.txt">Empirical recurrence of order 91</a>

%H Robert Israel, <a href="/A241618/a241618.pdf">Maple-assisted proof of empirical formula</a>

%F Empirical recurrence of order 91 (see link above).

%F Empirical formula verified (see link). - _Robert Israel_, Sep 03 2019

%e Some solutions for n=5

%e ..0....3....0....0....0....3....3....3....0....3....3....3....0....3....0....0

%e ..6....3....0....0....0....3....0....0....3....3....0....6....0....3....3....9

%e ..0....0....0....2...11....3....8....2....6....4....5....1....7....1....0....0

%e ..3....0....6....8....0....0....2....0....1....4....0....0....5....1....0....1

%e ..2....1....1....0....1....3....2....4....4....1....7....1....0....0....7....7

%e ..2....2....4....1....1....7....3....3....4....1....0....1....5....7....0....1

%e ..4....4....0....9....7....0....0....0....0...10....1....5....0....5....3....0

%p r:= [seq(seq([i,j],j=0..12-i),i=0..12)]:

%p T:= Matrix(91,91,proc(i,j) if r[i][1]=r[j][2] and r[i][1]+r[i][2]+r[j][1]<=12 then 1 else 0 fi end proc):

%p U[0]:= Vector(91,1):

%p for n from 1 to 40 do U[n]:= T . U[n-1] od:

%p seq(U[0]^%T . U[j], j=1..40); # _Robert Israel_, Sep 03 2019

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 26 2014