login
A240756
Number of n X 2 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.
1
5, 6, 12, 16, 16, 35, 35, 36, 65, 83, 102, 172, 191, 230, 381, 458, 576, 905, 1064, 1362, 2090, 2514, 3267, 4869, 5894, 7740, 11297, 13853, 18318, 26249, 32499, 43165, 60950, 76216, 101501, 141589, 178559, 238124, 328924, 418014, 557746, 764306, 977771
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-3) + a(n-5) - 2*a(n-8) - 4*a(n-9) - a(n-11) + 2*a(n-14) for n>17.
Empirical g.f.: x*(5 + 6*x + 12*x^2 + x^3 - 2*x^4 - 6*x^5 - 19*x^6 - 24*x^7 - 46*x^8 - 6*x^9 + 7*x^10 + 27*x^11 + 8*x^12 + 5*x^13 - 2*x^14 - x^15 - x^16) / ((1 + x)*(1 - x + x^2)*(1 - x^2 - x^3)*(1 - 2*x^3)*(1 + x^2 - x^3 + x^4 - x^5)). - Colin Barker, Oct 29 2018
EXAMPLE
Some solutions for n=4:
..3..1....3..3....3..3....3..3....3..1....2..2....3..3....3..1....2..2....3..1
..2..2....2..1....2..2....2..1....2..2....3..1....2..1....2..2....3..1....2..2
..3..1....3..1....3..3....3..3....3..1....3..2....3..3....3..1....3..1....3..1
..2..2....2..2....2..2....2..1....2..1....3..2....2..2....3..1....2..2....3..2
CROSSREFS
Column 2 of A240760.
Sequence in context: A138925 A088767 A032707 * A127306 A319184 A231959
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 12 2014
STATUS
approved