The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240756 Number of n X 2 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4. 1

%I

%S 5,6,12,16,16,35,35,36,65,83,102,172,191,230,381,458,576,905,1064,

%T 1362,2090,2514,3267,4869,5894,7740,11297,13853,18318,26249,32499,

%U 43165,60950,76216,101501,141589,178559,238124,328924,418014,557746,764306,977771

%N Number of n X 2 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.

%H R. H. Hardin, <a href="/A240756/b240756.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-3) + a(n-5) - 2*a(n-8) - 4*a(n-9) - a(n-11) + 2*a(n-14) for n>17.

%F Empirical g.f.: x*(5 + 6*x + 12*x^2 + x^3 - 2*x^4 - 6*x^5 - 19*x^6 - 24*x^7 - 46*x^8 - 6*x^9 + 7*x^10 + 27*x^11 + 8*x^12 + 5*x^13 - 2*x^14 - x^15 - x^16) / ((1 + x)*(1 - x + x^2)*(1 - x^2 - x^3)*(1 - 2*x^3)*(1 + x^2 - x^3 + x^4 - x^5)). - _Colin Barker_, Oct 29 2018

%e Some solutions for n=4:

%e ..3..1....3..3....3..3....3..3....3..1....2..2....3..3....3..1....2..2....3..1

%e ..2..2....2..1....2..2....2..1....2..2....3..1....2..1....2..2....3..1....2..2

%e ..3..1....3..1....3..3....3..3....3..1....3..2....3..3....3..1....3..1....3..1

%e ..2..2....2..2....2..2....2..1....2..1....3..2....2..2....3..1....2..2....3..2

%Y Column 2 of A240760.

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 12 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 20:06 EST 2022. Contains 350410 sequences. (Running on oeis4.)