login
A240757
Number of n X 3 0..3 arrays with no element equal to one plus the sum of elements to its left or zero plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4.
1
11, 9, 19, 24, 25, 35, 45, 76, 117, 180, 265, 365, 533, 786, 1220, 1796, 2728, 4087, 6140, 9060, 13625, 20484, 30734, 46161, 69561, 104127, 156807, 235060, 353693, 530499, 798289, 1200045, 1804325, 2711062, 4074989, 6123683, 9207099, 13837742
OFFSET
1,1
COMMENTS
Column 3 of A240760.
LINKS
FORMULA
Empirical: a(n) = 5*a(n-5) +4*a(n-6) +a(n-7) +4*a(n-8) +5*a(n-9) -6*a(n-10) -12*a(n-11) -a(n-12) -13*a(n-13) -16*a(n-14) -7*a(n-15) +13*a(n-16) +2*a(n-17) +20*a(n-18) +24*a(n-19) +15*a(n-20) -3*a(n-21) -2*a(n-22) -20*a(n-23) -44*a(n-24) -11*a(n-25) +9*a(n-26) -82*a(n-27) -30*a(n-28) +19*a(n-29) -21*a(n-30) -108*a(n-31) +132*a(n-32) +43*a(n-33) -68*a(n-34) +17*a(n-35) +171*a(n-36) -171*a(n-37) +66*a(n-38) +206*a(n-39) -46*a(n-40) -124*a(n-41) +214*a(n-42) -29*a(n-43) -283*a(n-44) +123*a(n-45) +129*a(n-46) -251*a(n-47) -6*a(n-48) +164*a(n-49) -17*a(n-50) -121*a(n-51) +216*a(n-52) +51*a(n-53) -79*a(n-54) +40*a(n-55) +58*a(n-56) -21*a(n-57) -16*a(n-58) +32*a(n-59) -3*a(n-60) -47*a(n-61) -29*a(n-62) -9*a(n-63) -2*a(n-64) -11*a(n-65) -2*a(n-66) +10*a(n-67) -6*a(n-69) +12*a(n-70) +3*a(n-71) -4*a(n-72) -3*a(n-73) +3*a(n-74) +a(n-75) -3*a(n-76) for n>84.
EXAMPLE
Some solutions for n=4
..2..2..2....2..2..2....2..2..2....3..1..3....2..1..1....3..1..3....2..2..2
..3..3..1....3..3..1....3..1..3....2..2..2....3..3..2....2..2..2....3..3..1
..2..0..2....2..2..2....2..0..2....3..1..2....2..1..2....2..1..3....2..2..2
..2..0..2....2..1..3....2..0..1....2..1..2....2..0..2....2..1..2....2..1..2
CROSSREFS
Cf. A240760.
Sequence in context: A342162 A337227 A254716 * A206422 A316450 A196006
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 12 2014
STATUS
approved