login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240749
Numbers n such that prime(n)^2 + prime(n+1)^2 is a semiprime.
2
2, 3, 6, 14, 30, 35, 37, 39, 41, 46, 52, 57, 68, 81, 82, 97, 101, 104, 112, 123, 126, 145, 154, 175, 189, 195, 209, 215, 221, 222, 259, 264, 272, 276, 308, 312, 314, 343, 357, 367, 370, 373, 389, 398, 399, 403, 411, 416, 418, 425, 432, 436, 447, 456, 462, 471, 473, 477, 485, 487, 489, 499, 509, 520, 538, 547
OFFSET
1,1
COMMENTS
a(n) = position of A216432(n) in A069484.
EXAMPLE
a(1) = 2: prime (2)^2 + prime (3)^2 = 3^2 + 5^2 = 34 = A069484(2) = A216432 (1).
a(2) = 3: prime (3)^2 + prime (4)^2 = 5^2 + 7^2 = 74 = A069484(3) = A216432 (2).
a(3) = 6: prime (6)^2 + prime (7)^2 = 13^2 + 17^2 = 458 = A069484(6) = A216432 (3).
MAPLE
with(numtheory):
isok := n -> evalb(bigomega(ithprime(n)^2 + ithprime(n+1)^2) = 2);
A240749_list := n -> select(isok, [$1..n]); A240749_list(555); # Peter Luschny, Apr 12 2014
MATHEMATICA
Position[Total/@Partition[Prime[Range[600]]^2, 2, 1], _?(PrimeOmega[#] == 2&)]// Flatten (* Harvey P. Dale, Apr 12 2017 *)
PROG
(PARI) isok(n) = bigomega(prime(n)^2 + prime(n+1)^2) == 2;
lista(nn) = {for(n=1, nn, if (isok(n), print1(n, ", "))); } \\ Michel Marcus, Apr 12 2014
(PARI) s=[]; for(n=2, 600, if(isprime((prime(n)^2+prime(n+1)^2)/2), s=concat(s, n))); s \\ Colin Barker, Apr 12 2014
CROSSREFS
Sequence in context: A187033 A087293 A250022 * A331684 A106364 A211931
KEYWORD
nonn
AUTHOR
Zak Seidov, Apr 11 2014
STATUS
approved