login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240519
T(n,k)=Number of nXk 0..1 arrays with no element equal to exactly two horizontal and vertical neighbors, with new values 0..1 introduced in row major order
8
1, 2, 2, 3, 3, 3, 5, 6, 6, 5, 8, 10, 10, 10, 8, 13, 21, 28, 28, 21, 13, 21, 42, 73, 99, 73, 42, 21, 34, 86, 196, 326, 326, 196, 86, 34, 55, 179, 515, 1080, 1376, 1080, 515, 179, 55, 89, 370, 1376, 3765, 6205, 6205, 3765, 1376, 370, 89, 144, 770, 3686, 13282, 28942, 37624
OFFSET
1,2
COMMENTS
Table starts
..1...2....3......5.......8.......13.........21..........34...........55
..2...3....6.....10......21.......42.........86.........179..........370
..3...6...10.....28......73......196........515........1376.........3686
..5..10...28.....99.....326.....1080.......3765.......13282........46928
..8..21...73....326....1376.....6205......28942......135093.......636475
.13..42..196...1080....6205....37624.....231665.....1440880......9082172
.21..86..515...3765...28942...231665....1906245....16000486....135790448
.34.179.1376..13282..135093..1440880...16000486...180760099...2056580724
.55.370.3686..46928..636475..9082172..135790448..2056580724..31517059634
.89.770.9914.166611.3024792.57688194.1158315893.23588995330.488025204070
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 20]
k=4: [order 48]
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..1....0..1..1..1....0..1..0..1....0..0..1..0....0..1..0..1
..1..0..1..1....0..0..1..0....1..1..1..0....1..1..1..1....1..0..0..0
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..0....0..1..0..1
..1..0..1..0....1..0..1..0....1..0..0..0....1..0..1..1....1..1..1..0
CROSSREFS
Column 1 is A000045(n+1)
Sequence in context: A029093 A369788 A301541 * A318037 A326165 A078462
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 06 2014
STATUS
approved