

A240521


a(n) = A050376(n)*A050376(n+1) where A050376(n) is the nth number of the form p^(2^k) with p is prime and k >= 0.


7



6, 12, 20, 35, 63, 99, 143, 208, 272, 323, 437, 575, 725, 899, 1147, 1517, 1763, 2021, 2303, 2597, 3127, 3599, 4087, 4757, 5183, 5767, 6399, 6723, 7387, 8633, 9797, 10403, 11021, 11663, 12317, 13673, 15367, 16637, 17947, 19043, 20711, 22499, 23707, 25591
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Let S be an odd positive number. The Ssequence of positive numbers is defined to be the sequence {prod_{i=1,...,r} q_(n+t_i)}_{n>=1}, where {q_i} is sequence A050376 and sum_{i=1,...,r} 2^t_i is the binary representation of S, such that t_1>t_2>...>t_r=0. Note that {S_1, S_3, S_5, ...} is a partition of all integers > 1. Then S_1=A050376, which is obtained when we set r=1,t_1=0.
This present sequence is the 3sequence in this partition. It is obtained when we set r=2, t_1=1, t_2=0.
A minimal set of generators for A000379 as a group under A059897(.,.).  Peter Munn, Aug 11 2019


LINKS

Table of n, a(n) for n=1..44.
Eric Weisstein's World of Mathematics, Group.
Wikipedia, Generating set of a group.


CROSSREFS

Cf. A000379, A050376, A059897.
Sequence in context: A309836 A117343 A286290 * A220211 A028611 A220470
Adjacent sequences: A240518 A240519 A240520 * A240522 A240523 A240524


KEYWORD

nonn


AUTHOR

Vladimir Shevelev, Apr 07 2014


EXTENSIONS

More terms from Peter J. C. Moses, Apr 18 2014


STATUS

approved



