login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301541
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1 or 3 horizontally or vertically adjacent elements, with upper left element zero.
7
1, 2, 2, 3, 3, 3, 5, 6, 6, 5, 8, 10, 9, 10, 8, 13, 21, 26, 26, 21, 13, 21, 42, 61, 79, 61, 42, 21, 34, 86, 154, 212, 212, 154, 86, 34, 55, 179, 374, 603, 658, 603, 374, 179, 55, 89, 370, 941, 1841, 2417, 2417, 1841, 941, 370, 89, 144, 770, 2357, 5663, 9037, 10783, 9037
OFFSET
1,2
COMMENTS
Table starts
..1...2....3.....5......8.....13......21.......34........55.........89
..2...3....6....10.....21.....42......86......179.......370........770
..3...6....9....26.....61....154.....374......941......2357.......5963
..5..10...26....79....212....603....1841.....5663.....17379......53565
..8..21...61...212....658...2417....9037....33526....125626.....477972
.13..42..154...603...2417..10783...47791...215362....990403....4616134
.21..86..374..1841...9037..47791..255406..1432328...8145489...46701775
.34.179..941..5663..33526.215362.1432328..9891331..68863154..484837793
.55.370.2357.17379.125626.990403.8145489.68863154.588765472.5132456266
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 20]
k=4: [order 62]
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..1..0..1..0. .1..1..1..0. .1..0..1..0. .1..1..1..0. .0..0..1..1
..1..1..0..0. .0..0..0..1. .0..1..0..0. .0..0..0..0. .0..1..0..1
..1..0..1..0. .1..0..1..0. .1..0..1..0. .1..0..0..0. .1..0..1..0
..0..1..0..1. .0..1..1..1. .0..1..1..1. .1..0..1..0. .1..0..1..0
CROSSREFS
Column 1 is A000045(n+1).
Column 2 is A240513.
Sequence in context: A260684 A029093 A369788 * A240519 A318037 A326165
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 23 2018
STATUS
approved