login
A240313
Number of partitions p of n such that (maximal multiplicity of the parts of p) >= (maximal part of p).
5
1, 1, 1, 1, 3, 3, 5, 5, 8, 11, 15, 19, 27, 32, 43, 53, 70, 84, 112, 135, 174, 212, 268, 324, 407, 490, 606, 731, 897, 1075, 1312, 1567, 1899, 2265, 2726, 3238, 3886, 4598, 5486, 6482, 7698, 9063, 10727, 12592, 14846, 17391, 20427, 23862, 27952, 32568, 38033
OFFSET
0,5
FORMULA
a(n) = A240312(n) + A240314(n) for n >= 0.
a(n) + A240310(n) = A000041(n) for n >= 0.
EXAMPLE
a(6) counts these 5 partitions: 3111, 222, 2211, 21111, 111111.
MATHEMATICA
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *)
Table[Count[f[n], p_ /; m[p] < Max[p]], {n, 0, z}] (* A240310 *)
Table[Count[f[n], p_ /; m[p] <= Max[p]], {n, 0, z}] (* A240311 *)
Table[Count[f[n], p_ /; m[p] == Max[p]], {n, 0, z}] (* A240312 *)
Table[Count[f[n], p_ /; m[p] >= Max[p]], {n, 0, z}] (* A240313 *)
Table[Count[f[n], p_ /; m[p] > Max[p]], {n, 0, z}] (* A240314 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 05 2014
STATUS
approved