login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions p of n such that (maximal multiplicity of the parts of p) >= (maximal part of p).
5

%I #8 Dec 25 2023 17:38:26

%S 1,1,1,1,3,3,5,5,8,11,15,19,27,32,43,53,70,84,112,135,174,212,268,324,

%T 407,490,606,731,897,1075,1312,1567,1899,2265,2726,3238,3886,4598,

%U 5486,6482,7698,9063,10727,12592,14846,17391,20427,23862,27952,32568,38033

%N Number of partitions p of n such that (maximal multiplicity of the parts of p) >= (maximal part of p).

%F a(n) = A240312(n) + A240314(n) for n >= 0.

%F a(n) + A240310(n) = A000041(n) for n >= 0.

%e a(6) counts these 5 partitions: 3111, 222, 2211, 21111, 111111.

%t z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *)

%t Table[Count[f[n], p_ /; m[p] < Max[p]], {n, 0, z}] (* A240310 *)

%t Table[Count[f[n], p_ /; m[p] <= Max[p]], {n, 0, z}] (* A240311 *)

%t Table[Count[f[n], p_ /; m[p] == Max[p]], {n, 0, z}] (* A240312 *)

%t Table[Count[f[n], p_ /; m[p] >= Max[p]], {n, 0, z}] (* A240313 *)

%t Table[Count[f[n], p_ /; m[p] > Max[p]], {n, 0, z}] (* A240314 *)

%Y Cf. A240310, A240311, A240312, A240314, A000041, A118053.

%K nonn,easy

%O 0,5

%A _Clark Kimberling_, Apr 05 2014