login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240110
Primes p such that p+2 and p^3+2 are also prime.
4
3, 5, 29, 71, 311, 419, 431, 1031, 1091, 1151, 1451, 1931, 2339, 3371, 3461, 4001, 4421, 4799, 5651, 6269, 6551, 6569, 6761, 6779, 6869, 7559, 7589, 8219, 9011, 9281, 10301, 11069, 11489, 11549, 12161, 12239, 12251, 12539, 14081, 15641, 17189, 18059, 18119, 18521
OFFSET
1,1
COMMENTS
All the terms in the sequence, except a(1), are congruent to 2 mod 3.
LINKS
MAPLE
KD := proc() local a, b, d; a:=ithprime(n); b:=a+2; d:=a^3+2; if isprime(b)and isprime(d) then RETURN (a); fi; end: seq(KD(), n=1..10000);
MATHEMATICA
Select[Prime[Range[2200]], AllTrue[{#+2, #^3+2}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 14 2017 *)
PROG
(PARI) s=[]; forprime(p=2, 20000, if(isprime(p+2) && isprime(p^3+2), s=concat(s, p))); s \\ Colin Barker, Apr 01 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 01 2014
STATUS
approved