login
A240112
Numbers for which the values of the Dedekind psi function (A001615) are greater than the values of the infinitary Dedekind psi function (A049417).
2
4, 9, 12, 16, 18, 20, 25, 28, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 75, 76, 80, 81, 84, 90, 92, 98, 99, 100, 108, 112, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198, 204, 207
OFFSET
1,1
COMMENTS
The first term of A072587 that is not in this sequence is 72.
On the set of the nonsquarefree numbers (A013929) it is complement to A240111.
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 2, 29, 284, 2845, 28527, 285352, 2853422, 28534455, 285344362, 2853443344, ... . Apparently, the asymptotic density of this sequence exists and equals 0.2853443... . - Amiram Eldar, Feb 13 2025
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Peter J. C. Moses)
MATHEMATICA
f1[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; f2[p_, e_] := (p+1)*p^(e-1); q[1] = False; q[n_] := Module[{fct = FactorInteger[n]}, Times @@ f2 @@@ fct > Times @@ f1 @@@ fct]; Select[Range[250], q] (* Amiram Eldar, Feb 13 2025 *)
PROG
(PARI) isok(k) = {my(f = factor(k), b); prod(i=1, #f~, (f[i, 1]+1)*f[i, 1]^(f[i, 2]-1)) > prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1))); } \\ Amiram Eldar, Feb 13 2025
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Vladimir Shevelev, Apr 01 2014
EXTENSIONS
More terms from Peter J. C. Moses, Apr 02 2014
STATUS
approved