login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092330
Fibonacci quotients: Fibonacci(p - Legendre(p|5))/p where p runs through the primes.
4
1, 1, 1, 3, 5, 29, 152, 136, 2016, 10959, 26840, 1056437, 2495955, 16311831, 102287808, 1627690024, 10021808981, 25377192720, 1085424779823, 2681584376185, 17876295136009, 113220181313816, 1933742696582736
OFFSET
1,4
COMMENTS
If p is prime then p divides fibonacci(p - Legendre(p|5)).
The result is known as the Fibonacci Quotient. - John Blythe Dobson, Sep 20 2014
Legendre(p|5) = 1 if prime p == 1 or 4 mod 5, -1 if p == 2 or 3 mod 5, 0 if p = 5. - Robert Israel, Sep 21 2014
Not to be confused with (Fibonacci(p) - Legendre(p|5))/p, which is A222361. - Jonathan Sondow, Dec 08 2017
LINKS
Zhi-Hong Sun and Zhi-Wei Sun, Fibonacci numbers and Fermat's last theorem, Acta Arithmetica 60(4) (1992), 371-388.
H. C. Williams, Some formulas concerning the fundamental unit of a real quadratic field, Discrete Mathematics, 92 (1991), 431-440.
Jianqiang Zhao, Finite Multiple zeta Values and Finite Euler Sums, arXiv preprint arXiv:1507.04917 [math.NT], 2015.
MAPLE
f:= proc(n) local p; p:= ithprime(n); combinat:-fibonacci(p - numtheory:-legendre(p, 5))/p end proc:
seq(f(n), n=1..30); # Robert Israel, Sep 21 2014
MATHEMATICA
a[n_] := With[{p = Prime[n]}, Fibonacci[p - KroneckerSymbol[p, 5]]/p];
Array[a, 23] (* Jean-François Alcover, Nov 25 2017 *)
PROG
(PARI) forprime (i=1, 150, print1(fibonacci(i-kronecker(i, 5))/i, ", "))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 17 2004
EXTENSIONS
Offset corrected by Jonathan Sondow, Dec 11 2017
STATUS
approved