login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fibonacci quotients: Fibonacci(p - Legendre(p|5))/p where p runs through the primes.
4

%I #48 Sep 03 2019 03:06:29

%S 1,1,1,3,5,29,152,136,2016,10959,26840,1056437,2495955,16311831,

%T 102287808,1627690024,10021808981,25377192720,1085424779823,

%U 2681584376185,17876295136009,113220181313816,1933742696582736

%N Fibonacci quotients: Fibonacci(p - Legendre(p|5))/p where p runs through the primes.

%C If p is prime then p divides fibonacci(p - Legendre(p|5)).

%C The result is known as the Fibonacci Quotient. - _John Blythe Dobson_, Sep 20 2014

%C Legendre(p|5) = 1 if prime p == 1 or 4 mod 5, -1 if p == 2 or 3 mod 5, 0 if p = 5. - _Robert Israel_, Sep 21 2014

%C Not to be confused with (Fibonacci(p) - Legendre(p|5))/p, which is A222361. - _Jonathan Sondow_, Dec 08 2017

%H Amiram Eldar, <a href="/A092330/b092330.txt">Table of n, a(n) for n = 1..647</a>

%H Zhi-Hong Sun and Zhi-Wei Sun, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa60/aa6046.pdf">Fibonacci numbers and Fermat's last theorem</a>, Acta Arithmetica 60(4) (1992), 371-388.

%H H. C. Williams, <a href="http://dx.doi.org/10.1016/0012-365X(91)90298-G">Some formulas concerning the fundamental unit of a real quadratic field,</a> Discrete Mathematics, 92 (1991), 431-440.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Fibonacci_number#Prime_divisors_of_Fibonacci_numbers">Prime divisors of Fibonacci numbers</a>

%H Jianqiang Zhao, <a href="http://arxiv.org/abs/1507.04917">Finite Multiple zeta Values and Finite Euler Sums</a>, arXiv preprint arXiv:1507.04917 [math.NT], 2015.

%p f:= proc(n) local p; p:= ithprime(n); combinat:-fibonacci(p - numtheory:-legendre(p,5))/p end proc:

%p seq(f(n),n=1..30); # _Robert Israel_, Sep 21 2014

%t a[n_] := With[{p = Prime[n]}, Fibonacci[p - KroneckerSymbol[p, 5]]/p];

%t Array[a, 23] (* _Jean-François Alcover_, Nov 25 2017 *)

%o (PARI) forprime (i=1,150,print1(fibonacci(i-kronecker(i,5))/i,","))

%Y Cf. A000045, A080891, A222361.

%K easy,nonn

%O 1,4

%A Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 17 2004

%E Offset corrected by _Jonathan Sondow_, Dec 11 2017