OFFSET
1,2
COMMENTS
Let a'=a1 be the first arithmetic derivative, then a2 is the second and so on. It is interesting to examine the length of successive arithmetic derivatives ending with 1. For example, a(168) = 445 is the 4th arithmetic derivative of prime(168)*prime(169) = 997*1009 = 1005973. The example given here is of length 11; that means that the 11th arithmetic derivative of 1005973 is 1.
LINKS
Freimut Marschner, Table of n, a(n) for n = 1..429
Wikipedia, Arithmetic derivative
Wikipedia, p-derivation
FORMULA
EXAMPLE
(997*1009)' = a, a' = a1 = 2006, a2 = 1155, a3 = 886, a4 = 445, a5 = 94, a6 = 49, a7 = 14, a8 = 9, a9 = 6, a10 = 5, a11 = 1.
MAPLE
with(numtheory); P:= proc(q) local a, b, c, d, f, n, p; a:=ithprime(n)*ithprime(n+1);
for n from 1 to q do a:=ithprime(n)*ithprime(n+1);
b:=a*add(op(2, p)/op(1, p), p=ifactors(a)[2]); c:=b*add(op(2, p)/op(1, p), p=ifactors(b)[2]);
d:=c*add(op(2, p)/op(1, p), p=ifactors(c)[2]); f:=d*add(op(2, p)/op(1, p), p=ifactors(d)[2]);
print(d); od; end: P(10^4); # Paolo P. Lava, Apr 07 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Freimut Marschner, Mar 31 2014
STATUS
approved