OFFSET
1,1
COMMENTS
Comments from Christopher M. Stokes, Aug 02 2022: (Start)
Also the primes p for which A047788(p-1) = 0 mod p^2.
Also the primes for which the cyclotomic lambda invariant of Q(sqrt{-3}) is greater than 1. (End)
REFERENCES
J. B. Cosgrave, A Mersenne-Wieferich Odyssey, Manuscript, May 2022. See Section 18.6.
LINKS
J. B. Cosgrave and K. Dilcher, The multiplicative orders of certain Gauss factorials, Intl. J. Number Theory 7 (1) (2011) 145-171.
John B. Cosgrave and Karl Dilcher, The multiplicative orders of certain Gauss factorials II, Funct. Approx. Comment. Math. Volume 54, Number 1 (2016), 73-93.
D. S. Dummit, D. Ford, H. Kisilevsky, and J. W. Sands, Computation of Iwasawa lambda invariants for imaginary quadratic fields, Journal of number theory, 37(1) (1991), 100-121. [Reference added by N. J. A. Sloane, Jun 24 2022]
Christopher Stokes, On Gauss factorials and their application to Iwasawa theory for imaginary quadratic fields, arXiv:2207.07804 [math.NT], 2022.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Apr 06 2014
EXTENSIONS
More terms from Cosgrave (2022), Section 18.6 added by N. J. A. Sloane, May 29 2022
a(9) from Stokes (2022) added by Michel Marcus, Jul 20 2022
STATUS
approved