login
A239902
Exceptional primes: those for which Eq. (4.8) in Cosgrave and Dilcher (2011) fails.
2
13, 181, 2521, 76543, 489061, 6811741, 1321442641, 18405321661, 381765135195632792959100810331957408101589361
OFFSET
1,1
COMMENTS
Comments from Christopher M. Stokes, Aug 02 2022: (Start)
Also the primes p for which A047788(p-1) = 0 mod p^2.
Also the primes for which the cyclotomic lambda invariant of Q(sqrt{-3}) is greater than 1. (End)
REFERENCES
J. B. Cosgrave, A Mersenne-Wieferich Odyssey, Manuscript, May 2022. See Section 18.6.
LINKS
J. B. Cosgrave and K. Dilcher, The multiplicative orders of certain Gauss factorials, Intl. J. Number Theory 7 (1) (2011) 145-171.
John B. Cosgrave and Karl Dilcher, The multiplicative orders of certain Gauss factorials II, Funct. Approx. Comment. Math. Volume 54, Number 1 (2016), 73-93.
D. S. Dummit, D. Ford, H. Kisilevsky, and J. W. Sands, Computation of Iwasawa lambda invariants for imaginary quadratic fields, Journal of number theory, 37(1) (1991), 100-121. [Reference added by N. J. A. Sloane, Jun 24 2022]
CROSSREFS
Sequence in context: A189432 A001570 A122571 * A020544 A009015 A067385
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Apr 06 2014
EXTENSIONS
More terms from Cosgrave (2022), Section 18.6 added by N. J. A. Sloane, May 29 2022
a(9) from Stokes (2022) added by Michel Marcus, Jul 20 2022
STATUS
approved