login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A009015 Expansion of E.g.f.: cos(x*cos(x)) (even powers only). 8
1, -1, 13, -181, 3865, -140521, 6324517, -344747677, 23853473329, -1996865965009, 193406280000061, -21615227339380357, 2778071540350106953, -403985610499148666041, 65635628800688339178325 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{j=0..(2*n-1)/2} binomial(2*n,2*j)*((Sum_{i=0..((2*j-1)/2)} (j-i)^(2*n-2*j)*binomial(2*j,i)))*(-1)^(n))/(2^(4*j-2*n-1)))+(-1)^n. - Vladimir Kruchinin, Jun 06 2011
MAPLE
seq(coeff(series(factorial(n)*(cos(x*cos(x))), x, n+1), x, n), n=0..30, 2); # Muniru A Asiru, Jul 21 2018
MATHEMATICA
With[{nmax = 60}, CoefficientList[Series[Cos[x*Cos[x]], {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; -1 ;; 2]] (* G. C. Greubel, Jul 21 2018 *)
PROG
(Maxima)
a(n):=sum(binomial(2*n, 2*j)*((sum((j-i)^(2*n-2*j)*binomial(2*j, i), i, 0, ((2*j-1)/2)))*(-1)^(n))/(2^(4*j-2*n-1)), j, 0, (2*n-1)/2)+(-1)^n; /* Vladimir Kruchinin, Jun 06 2011 */
(PARI) x='x+O('x^50); v=Vec(serlaplace(cos(x*cos(x)))); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Jul 21 2018
CROSSREFS
Sequence in context: A001570 A239902 A020544 * A067385 A097260 A178303
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 18:25 EST 2023. Contains 367614 sequences. (Running on oeis4.)