login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A239874
Integers k such that 2*k^2 + 1 and 2*k^3 + 1 are prime.
5
1, 6, 9, 21, 27, 30, 72, 96, 99, 162, 186, 204, 237, 264, 297, 321, 357, 360, 375, 492, 537, 621, 759, 819, 834, 897, 936, 1065, 1242, 1326, 1329, 1359, 1419, 1494, 1506, 1596, 1662, 1704, 1740, 1749, 1761, 1842, 1869, 2157, 2175, 2250, 2274, 2451, 2547
OFFSET
1,2
COMMENTS
All terms > 1 are multiples of 3. Also, no term is congruent to 3 modulo 5.
LINKS
Zak Seidov, Table of n, a(n) for n = 1..1367 [Duplicate terms removed by Georg Fischer, Nov 03 2024]
MAPLE
select(t -> isprime(2*t^2+1) and isprime(2*t^3+1), [$1..6000]); # Robert Israel, Nov 03 2024
MATHEMATICA
s={1}; Do[If[PrimeQ [2k^2+1]&&PrimeQ[2k^3+1], AppendTo[s, k]], {k, 3, 10^3, 3}]; s
Select[Range[3500], PrimeQ[2 #^2 + 1] && PrimeQ[2 #^3 + 1]&] (* Vincenzo Librandi, Mar 29 2014 *)
PROG
(PARI) s=[]; for(n=1, 4000, if(isprime(2*n^2+1) && isprime(2*n^3+1), s=concat(s, n))); s \\ Colin Barker, Mar 28 2014
CROSSREFS
Intersection of A089001 and A168550.
Sequence in context: A355484 A358222 A165717 * A043103 A242756 A268665
KEYWORD
nonn
AUTHOR
Zak Seidov, Mar 28 2014
STATUS
approved