login
A239872
Number of strict partitions of 2n having 1 more even part than odd, so that there is at least one ordering of the parts in which the even and odd parts alternate, and the first and last terms are even.
5
0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 6, 10, 17, 26, 40, 57, 81, 110, 148, 193, 250, 316, 397, 491, 603, 732, 885, 1061, 1268, 1508, 1790, 2120, 2510, 2970, 3517, 4170, 4950, 5887, 7013, 8371, 10005, 11979, 14353, 17217, 20654, 24785, 29725, 35637, 42672, 51046, 60962
OFFSET
0,9
COMMENTS
Let c(n) be the number of strict partitions (that is, every part has multiplicity 1) of 2n having 1 more even part than odd, so that there is an ordering of parts for which the even and odd parts alternate and the first and last terms are even. This sequence is nondecreasing, unlike A239871, of which it is a bisection; the other bisection is A239873.
LINKS
EXAMPLE
a(9) counts these 3 partitions of 18: [18], [8,3,4,1,2], [6,5,4,1,2].
MAPLE
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2 or
abs(t)-n>0, 0, `if`(n=0, 1, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i-1, t+(2*irem(i, 2)-1)))))
end:
a:= n-> b(2*n$2, 1):
seq(a(n), n=0..60); # Alois P. Heinz, Apr 01 2014
MATHEMATICA
d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; p[n_] := p[n] = Select[d[n], Count[#, _?OddQ] == -1 + Count[#, _?EvenQ] &]; t = Table[p[n], {n, 0, 20}]
TableForm[t] (* shows the partitions *)
u = Table[Length[p[2 n]], {n, 0, 40}] (* A239872 *)
(* Peter J. C. Moses, Mar 10 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n > i*(i+1)/2 || Abs[t]-n > 0, 0, If[n == 0, 1, b[n, i-1, t] + If[i>n, 0, b[n-i, i-1, t + (2*Mod[i, 2] - 1)]]]]; a[n_] := b[2*n, 2*n, 1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 28 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 29 2014
STATUS
approved