login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239743
Primes of the form prime(k)^3 + k.
1
29, 347, 2203, 704993, 2248123, 2685653, 3442987, 81182821, 86938393, 95444081, 230346509, 1064332433, 1298596753, 1829276767, 2202074113, 3449796071, 4306879141, 6740558659, 8205739219, 9649993009, 11650768499, 14225261327, 15124198183, 19968681493, 21415471837
OFFSET
1,1
LINKS
EXAMPLE
29 is in the sequence because prime(2)^3 + 2 = 29, which is prime.
347 is in the sequence because prime(4)^3 + 4 = 347, which is prime.
MAPLE
KD := proc() local a, b; a:= ithprime(n); b:=a^3+n; if isprime(b) then RETURN (b); fi; end: seq(KD(), n=1..1000);
MATHEMATICA
Select[Table[Prime[k]^3 + k, {k, 1000}], PrimeQ]
PROG
(PARI) s=[]; for(k=1, 1000, n=prime(k)^3+k; if(isprime(n), s=concat(s, n))); s \\ Colin Barker, Mar 26 2014
(Magma) [q: k in [1..1000] | IsPrime(q) where q is NthPrime(k)^3+k]; // Bruno Berselli, Mar 26 2014
CROSSREFS
Cf. A000040 (prime numbers).
Cf. A184935 (primes: k^2 + prime(k)).
Cf. A188831 (primes: k^2 - prime(k)).
Cf. A229203 (primes: k^3 - prime(k)).
Cf. A061068 (primes: prime(k) + k)
Cf. A212304 (primes: prime(k)^2 + k).
Sequence in context: A160442 A125417 A156640 * A022689 A234810 A077516
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Mar 26 2014
STATUS
approved