login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239740
a(n) = gcd(Sum_{k=1...n} F(k), Product{j=1...n} F(j)), where F(k) is the k-th Fibonacci number.
2
1, 1, 2, 1, 6, 20, 3, 18, 8, 143, 8, 8, 21, 986, 84, 63, 220, 6764, 55, 770, 144, 46367, 144, 432, 377, 317810, 16588, 377, 43428, 2178308, 987, 53298, 2584, 14930351, 2584, 18088, 6765, 102334154, 784740, 20295, 2054476, 701408732, 17711, 1664834, 46368
OFFSET
1,3
COMMENTS
The Fibonacci numbers in the sequence are 1, 2, 3, 8, 21, 55, 144, 377, 987, ... and a majority are elements of A001906 (F(2*n)= bisection of Fibonacci sequence).
We find consecutive values such that (1, 2), (2, 3), (20, 21), (986, 987), (6764, 6765), (46367, 46368), (317810, 317811), (14930351, 14930352), ...
LINKS
EXAMPLE
The first 8 Fibonacci numbers are 1,1,2,3,5,8,13,21 and 1+1+2+3+5+8+13+21 = 54. So a(8) = gcd(54, 1*1*2*3*5*8*13*21) = 18.
MAPLE
with(combinat, fibonacci):seq(gcd(add(fibonacci(i), i=1..n), mul(fibonacci(j), j=1..n)), n=1..60);
MATHEMATICA
nn=60; With[{prs=Fibonacci[Range[nn]]}, Table[GCD[Total[Take[prs, n]], Times@@Take[ prs, n]], {n, nn}]]
PROG
(Haskell)
a239740 n = gcd (sum fs) (product fs)
where fs = take n $ tail a000045_list
-- Reinhard Zumkeller, Mar 27 2014
CROSSREFS
Sequence in context: A365109 A025271 A153804 * A375255 A371986 A268371
KEYWORD
nonn
AUTHOR
Michel Lagneau, Mar 26 2014
STATUS
approved