login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239686
Numbers n such that if n = a U b (where U denotes concatenation) then sigma*(a) + sigma*(b) = abs(sigma*(n) - n), where sigma*(n) is the sum of the anti-divisors of n.
1
47, 118, 205, 846, 898, 1219, 4181, 4236, 4701, 4929, 6014, 6516, 13276, 30445, 59956, 61916, 63216, 67314, 72066, 79554, 90674, 106316, 128998, 129179, 136816, 142486, 143396, 180448, 229914, 284894, 357841, 421318, 483286, 486721, 487618, 500218, 642445
OFFSET
1,1
COMMENTS
Neither a or b minor than 2 are considered because numbers 1 and 2 have no anti-divisors.
Similar to A239562 but using anti-divisors instead of divisors.
EXAMPLE
Anti-divisors of 4701 are 2, 6, 7, 17, 79, 119, 1343, 553, 3134 and their sum is 5260. Consider 4701 as 4 U 701. Anti-divisors of 4 is 3 and of 701 are 2, 3, 23, 61, 467 whose sum is 556. At the end we have that 5260 - 4701 = 559 = 3 + 556.
MAPLE
with(numtheory);
T:=proc(t) local w, x, y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end:
P:=proc(q) local a, b, c, d, f, g, i, j, k, n;
for n from 1 to q do b:=T(n); k:=0; j:=n; while j mod 2<>1 do k:=k+1; j:=j/2; od;
a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2;
for i from 1 to b-1 do c:=trunc(n/10^i); d:=n-c*10^i; if c>2 and d>2 then
k:=0; j:=c; while j mod 2<>1 do k:=k+1; j:=j/2; od;
f:=sigma(2*c+1)+sigma(2*c-1)+sigma(c/2^k)*2^(k+1)-6*c-2;
k:=0; j:=d; while j mod 2<>1 do k:=k+1; j:=j/2; od;
g:=sigma(2*d+1)+sigma(2*d-1)+sigma(d/2^k)*2^(k+1)-6*d-2;
if f+g=a-n then print(n); break; fi; fi; od; od; end: P(10^9);
CROSSREFS
KEYWORD
nonn,base,hard
AUTHOR
Paolo P. Lava, Mar 24 2014
STATUS
approved