|
|
A239424
|
|
T(n,k)=Number of nXk 0..3 arrays with no element equal to the sum of elements to its left or the sum of the elements above it or the sum of the elements diagonally to its northwest, modulo 4
|
|
5
|
|
|
3, 6, 6, 14, 18, 14, 32, 80, 80, 32, 72, 320, 684, 320, 72, 164, 1244, 4740, 4740, 1244, 164, 372, 4990, 34728, 60626, 34728, 4990, 372, 844, 19560, 247942, 811554, 811554, 247942, 19560, 844, 1916, 77220, 1823840, 10575232, 21127494, 10575232, 1823840
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Table starts
....3.......6........14..........32...........72...........164...........372
....6......18........80.........320.........1244..........4990.........19560
...14......80.......684........4740........34728........247942.......1823840
...32.....320......4740.......60626.......811554......10575232.....145743440
...72....1244.....34728......811554.....21127494.....503941286...13584156020
..164....4990....247942....10575232....503941286...22336992290.1143701274244
..372...19560...1823840...145743440..13584156020.1143701274244
..844...77220..13104784..1928821306.331591613568
.1916..304224..96061078.26684346362
.4348.1197958.695765782
|
|
LINKS
|
|
|
FORMULA
|
Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) +2*a(n-3)
k=2: [order 14] for n>15
|
|
EXAMPLE
|
Some solutions for n=4 k=4
..1..3..3..1....3..2..3..3....3..2..2..1....3..1..2..3....3..2..2..1
..3..0..0..2....2..0..0..1....2..0..1..0....2..0..0..0....2..0..3..0
..2..1..2..0....2..0..0..3....3..1..1..2....3..0..0..2....2..1..0..0
..3..1..2..1....2..0..1..2....3..2..2..2....3..0..1..2....1..0..0..2
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|