The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238775 T(n,k)=Number of nXk 0..3 arrays with no element equal to the sum modulo 4 of elements to its left or elements above it 9
 3, 6, 6, 14, 30, 14, 32, 156, 156, 32, 72, 810, 1888, 810, 72, 164, 4106, 22242, 22242, 4106, 164, 372, 21132, 258720, 604412, 258720, 21132, 372, 844, 108124, 3044922, 16041854, 16041854, 3044922, 108124, 844, 1916, 553828, 35640158, 432845880 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Table starts ....3.......6.........14............32................72..................164 ....6......30........156...........810..............4106................21132 ...14.....156.......1888.........22242............258720..............3044922 ...32.....810......22242........604412..........16041854............432845880 ...72....4106.....258720......16041854.........976810146..........60277582112 ..164...21132....3044922.....432845880.......60277582112........8524103612876 ..372..108124...35640158...11591229010.....3697656930974.....1196624830872094 ..844..553828..417759376..311132395064...227187542722224...168396084501288492 .1916.2837376.4896355616.8346793174230.13955749970865816.23680768603975178514 LINKS R. H. Hardin, Table of n, a(n) for n = 1..180 FORMULA Empirical for column k: k=1: a(n) = a(n-1) +2*a(n-2) +2*a(n-3) k=2: [order 10] k=3: [order 35] EXAMPLE Some solutions for n=3 k=4 ..2..3..3..1....2..3..2..2....3..2..2..2....1..3..2..3....3..2..2..1 ..1..2..1..2....3..2..0..3....2..0..0..1....3..1..1..0....2..1..0..0 ..1..3..3..1....2..0..0..3....2..1..0..2....3..1..1..0....2..0..0..0 CROSSREFS Sequence in context: A239424 A119306 A107972 * A269525 A341885 A036252 Adjacent sequences:  A238772 A238773 A238774 * A238776 A238777 A238778 KEYWORD nonn,tabl AUTHOR R. H. Hardin, Mar 05 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 30 09:38 EDT 2022. Contains 354920 sequences. (Running on oeis4.)