Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Mar 17 2014 21:03:52
%S 3,6,6,14,18,14,32,80,80,32,72,320,684,320,72,164,1244,4740,4740,1244,
%T 164,372,4990,34728,60626,34728,4990,372,844,19560,247942,811554,
%U 811554,247942,19560,844,1916,77220,1823840,10575232,21127494,10575232,1823840
%N T(n,k)=Number of nXk 0..3 arrays with no element equal to the sum of elements to its left or the sum of the elements above it or the sum of the elements diagonally to its northwest, modulo 4
%C Table starts
%C ....3.......6........14..........32...........72...........164...........372
%C ....6......18........80.........320.........1244..........4990.........19560
%C ...14......80.......684........4740........34728........247942.......1823840
%C ...32.....320......4740.......60626.......811554......10575232.....145743440
%C ...72....1244.....34728......811554.....21127494.....503941286...13584156020
%C ..164....4990....247942....10575232....503941286...22336992290.1143701274244
%C ..372...19560...1823840...145743440..13584156020.1143701274244
%C ..844...77220..13104784..1928821306.331591613568
%C .1916..304224..96061078.26684346362
%C .4348.1197958.695765782
%H R. H. Hardin, <a href="/A239424/b239424.txt">Table of n, a(n) for n = 1..84</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1) +2*a(n-2) +2*a(n-3)
%F k=2: [order 14] for n>15
%e Some solutions for n=4 k=4
%e ..1..3..3..1....3..2..3..3....3..2..2..1....3..1..2..3....3..2..2..1
%e ..3..0..0..2....2..0..0..1....2..0..1..0....2..0..0..0....2..0..3..0
%e ..2..1..2..0....2..0..0..3....3..1..1..2....3..0..0..2....2..1..0..0
%e ..3..1..2..1....2..0..1..2....3..2..2..2....3..0..1..2....1..0..0..2
%Y Column 1 is A238768
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Mar 17 2014