%I #4 Mar 17 2014 21:03:52
%S 3,6,6,14,18,14,32,80,80,32,72,320,684,320,72,164,1244,4740,4740,1244,
%T 164,372,4990,34728,60626,34728,4990,372,844,19560,247942,811554,
%U 811554,247942,19560,844,1916,77220,1823840,10575232,21127494,10575232,1823840
%N T(n,k)=Number of nXk 0..3 arrays with no element equal to the sum of elements to its left or the sum of the elements above it or the sum of the elements diagonally to its northwest, modulo 4
%C Table starts
%C ....3.......6........14..........32...........72...........164...........372
%C ....6......18........80.........320.........1244..........4990.........19560
%C ...14......80.......684........4740........34728........247942.......1823840
%C ...32.....320......4740.......60626.......811554......10575232.....145743440
%C ...72....1244.....34728......811554.....21127494.....503941286...13584156020
%C ..164....4990....247942....10575232....503941286...22336992290.1143701274244
%C ..372...19560...1823840...145743440..13584156020.1143701274244
%C ..844...77220..13104784..1928821306.331591613568
%C .1916..304224..96061078.26684346362
%C .4348.1197958.695765782
%H R. H. Hardin, <a href="/A239424/b239424.txt">Table of n, a(n) for n = 1..84</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1) +2*a(n-2) +2*a(n-3)
%F k=2: [order 14] for n>15
%e Some solutions for n=4 k=4
%e ..1..3..3..1....3..2..3..3....3..2..2..1....3..1..2..3....3..2..2..1
%e ..3..0..0..2....2..0..0..1....2..0..1..0....2..0..0..0....2..0..3..0
%e ..2..1..2..0....2..0..0..3....3..1..1..2....3..0..0..2....2..1..0..0
%e ..3..1..2..1....2..0..1..2....3..2..2..2....3..0..1..2....1..0..0..2
%Y Column 1 is A238768
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Mar 17 2014