login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A238888
Number A(n,k) of self-inverse permutations p on [n] with displacement of elements restricted by k: |p(i)-i| <= k, square array A(n,k), n>=0, k>=0, read by antidiagonals.
10
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 4, 5, 1, 1, 1, 2, 4, 8, 8, 1, 1, 1, 2, 4, 10, 15, 13, 1, 1, 1, 2, 4, 10, 22, 29, 21, 1, 1, 1, 2, 4, 10, 26, 48, 56, 34, 1, 1, 1, 2, 4, 10, 26, 66, 103, 108, 55, 1, 1, 1, 2, 4, 10, 26, 76, 158, 225, 208, 89, 1, 1, 1, 2, 4, 10, 26, 76, 206, 376, 492, 401, 144, 1
OFFSET
0,9
COMMENTS
A(n,k) is exactly the number of matchings of the k-th power of the path on n vertices. Here is A(4,1): o o o o (1234); o o o--o (1243); o o--o o (1324); o--o o o (2134); o--o o--o (2143). - Pietro Codara, Feb 17 2015
LINKS
Joerg Arndt and Alois P. Heinz, Antidiagonals n = 0..48, flattened
FORMULA
T(n,k) = Sum_{i=0..k} A238889(n,i).
EXAMPLE
A(4,0) = 1: 1234.
A(4,1) = 5: 1234, 1243, 1324, 2134, 2143.
A(4,2) = 8: 1234, 1243, 1324, 1432, 2134, 2143, 3214, 3412.
A(4,3) = 10: 1234, 1243, 1324, 1432, 2134, 2143, 3214, 3412, 4231, 4321.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, 2, 2, 2, ...
1, 3, 4, 4, 4, 4, 4, 4, 4, ...
1, 5, 8, 10, 10, 10, 10, 10, 10, ...
1, 8, 15, 22, 26, 26, 26, 26, 26, ...
1, 13, 29, 48, 66, 76, 76, 76, 76, ...
1, 21, 56, 103, 158, 206, 232, 232, 232, ...
1, 34, 108, 225, 376, 546, 688, 764, 764, ...
MAPLE
b:= proc(n, k, s) option remember; `if`(n=0, 1, `if`(n in s,
b(n-1, k, s minus {n}), b(n-1, k, s) +add(`if`(i in s, 0,
b(n-1, k, s union {i})), i=max(1, n-k)..n-1)))
end:
A:= (n, k)-> `if`(k>n, A(n, n), b(n, k, {})):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[n_, k_, s_] := b[n, k, s] = If[n == 0, 1, If[MemberQ[s, n], b[n-1, k, DeleteCases[s, n]], b[n-1, k, s] + Sum[If[MemberQ[s, i], 0, b[n-1, k, s ~Union~ {i}]], {i, Max[1, n-k], n-1}]]]; A[n_, k_] := If[k>n, A[n, n], b[n, k, {}]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Mar 12 2014, translated from Maple *)
CROSSREFS
Columns k=0-10 give: A000012, A000045(n+1), A000078(n+3), A239075, A239076, A239077, A239078, A239079, A239080, A239081, A239082.
Main diagonal gives A000085.
Sequence in context: A119338 A054124 A144406 * A179748 A096670 A130461
KEYWORD
nonn,tabl
AUTHOR
Joerg Arndt and Alois P. Heinz, Mar 06 2014
STATUS
approved