login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239077
Number of self-inverse permutations p on [n] with displacement of elements restricted by 5: |p(i)-i| <= 5.
2
1, 1, 2, 4, 10, 26, 76, 206, 546, 1406, 3608, 9259, 23981, 62324, 162224, 422028, 1096900, 2848240, 7394076, 19196044, 49844356, 129443736, 336182997, 873106045, 2267493182, 5888625652, 15292437454, 39713590230, 103134439084, 267836774530, 695564961926
OFFSET
0,3
COMMENTS
Column k=5 of A238888.
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: -(x^22 +2*x^17 -10*x^12 -2*x^11 +2*x^10 -2*x^9 -2*x^8 +6*x^7 +4*x^6 -2*x^5 +2*x^4 +2*x^3 +2*x^2-1) / (x^32 +x^31 +x^30 -x^29 -x^28 +7*x^27 +5*x^26 +x^25 -5*x^24 -3*x^23 -x^22 -8*x^21 -16*x^20 +8*x^18 -40*x^17 -36*x^16 +20*x^14 +12*x^13 +64*x^12 +52*x^11 +19*x^10 -5*x^9 -13*x^8 -27*x^7 -19*x^6 +x^5 -x^4 -x^3 -3*x^2 -x+1).
MAPLE
gf:= -(x^22 +2*x^17 -10*x^12 -2*x^11 +2*x^10 -2*x^9 -2*x^8 +6*x^7 +4*x^6 -2*x^5 +2*x^4 +2*x^3 +2*x^2-1) / (x^32 +x^31 +x^30 -x^29 -x^28 +7*x^27 +5*x^26 +x^25 -5*x^24 -3*x^23 -x^22 -8*x^21 -16*x^20 +8*x^18 -40*x^17 -36*x^16 +20*x^14 +12*x^13 +64*x^12 +52*x^11 +19*x^10 -5*x^9 -13*x^8 -27*x^7 -19*x^6 +x^5 -x^4 -x^3 -3*x^2 -x+1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
MATHEMATICA
CoefficientList[Series[-(x^22 + 2 x^17 - 10 x^12 - 2 x^11 + 2 x^10 - 2 x^9 - 2 x^8 + 6 x^7 + 4 x^6 - 2 x^5 + 2 x^4 + 2 x^3 + 2 x^2 - 1)/(x^32 + x^31 + x^30 - x^29 - x^28 + 7 x^27 + 5 x^26 + x^25 - 5 x^24 - 3 x^23 - x^22 - 8 x^21 - 16 x^20 + 8 x^18 - 40 x^17 - 36 x^16 + 20 x^14 + 12 x^13 + 64 x^12 + 52 x^11 + 19 x^10 - 5 x^9 - 13 x^8 - 27 x^7 - 19 x^6 + x^5 - x^4 - x^3 - 3 x^2 - x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 12 2014 *)
CROSSREFS
Sequence in context: A006251 A049401 A294672 * A148099 A007579 A239078
KEYWORD
nonn,easy
AUTHOR
Joerg Arndt and Alois P. Heinz, Mar 10 2014
STATUS
approved