login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238833 a(n) = n-1 for n <= 2; thereafter a(n) = A238824(n-2) + A238832(n-1). 2
0, 1, 0, 2, 2, 7, 16, 40, 101, 246, 615, 1504, 3724, 9147, 22567, 55541, 136884, 337128, 830628, 2046145, 5040932, 12418320, 30593281, 75367352, 185670647, 457405836, 1126836394, 2776001211, 6838779857, 16847579205, 41504619640, 102248123906, 251891939366, 620544865783, 1528734638988, 3766092860744 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

V. M. Zhuravlev, Horizontally-convex polyiamonds and their generating functions, Mat. Pros. 17 (2013), 107-129 (in Russian). See the sequence j(n).

Index entries for linear recurrences with constant coefficients, signature (1,5,-1,-7,-1,6,6,1,-1).

FORMULA

G.f.: -x^2*(x^8+2*x^7+x^6-2*x^5-2*x^4-x^3+3*x^2+x-1) / ((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)). - Colin Barker, Mar 20 2014

MAPLE

g:=proc(n) option remember; local t1; t1:=[2, 3, 6, 14, 34, 84, 208, 515];

if n <= 7 then t1[n] else

3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;

[seq(g(n), n=1..32)]; # A238823

d:=proc(n) option remember; global g; local t1; t1:=[0, 1];

if n <= 2 then t1[n] else

g(n-1)-2*d(n-1)-d(n-2); fi; end proc;

[seq(d(n), n=1..32)]; # A238824

p:=proc(n) option remember; global d; local t1; t1:=[0, 0, 0, 1];

if n <= 4 then t1[n] else

p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;

[seq(p(n), n=1..32)]; # A238825

h:=n->p(n+3)-p(n+1); [seq(h(n), n=1..32)]; #A238826

r:=proc(n) option remember; global p; local t1; t1:=[0, 0, 0, 0];

if n <= 4 then t1[n] else

r(n-2)+p(n-3); fi; end proc;

[seq(r(n), n=1..32)]; # A238827

b:=n-> if n=1 then 0 else d(n-1)+p(n); fi; [seq(b(n), n=1..32)]; #A238828

a:=n->g(n)-h(n); [seq(a(n), n=1..32)]; #A238829

i:=proc(n) option remember; global b, r; local t1; t1:=[0, 0];

if n <= 2 then t1[n] else

i(n-2)+b(n-1)+r(n); fi; end proc;

[seq(i(n), n=1..32)]; # A238830

q:=n-> if n<=2 then 0 else r(n)+i(n-2); fi;

[seq(q(n), n=1..45)]; # A238831

e:=n-> if n<=1 then 0 else d(n-1)+i(n-1); fi;

[seq(e(n), n=1..45)]; # A238832

j:=n-> if n<=2 then n-1 else d(n-2)+e(n-1); fi;

[seq(j(n), n=1..45)]; # A238833

MATHEMATICA

CoefficientList[Series[- x (x^8 + 2 x^7 + x^6 - 2 x^5 - 2 x^4 - x^3 + 3 x^2 + x - 1)/((x + 1)^2 (x^7 - 3 x^6 - x^5 - x^4 + 4 x^3 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 21 2014 *)

LinearRecurrence[{1, 5, -1, -7, -1, 6, 6, 1, -1}, {0, 1, 0, 2, 2, 7, 16, 40, 101, 246}, 40] (* Harvey P. Dale, Jul 23 2021 *)

PROG

(PARI) concat(0, Vec(-x^2*(x^8+2*x^7+x^6-2*x^5-2*x^4-x^3+3*x^2+x-1)/((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)) + O(x^100))) \\ Colin Barker, Mar 20 2014

(MAGMA) m:=40; R<x>:=LaurentSeriesRing(RationalField(), m); [0] cat Coefficients(R! -x^2*(x^8+2*x^7+x^6-2*x^5-2*x^4-x^3+3*x^2+x-1) / ((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1))); // Vincenzo Librandi, Mar 21 2014

CROSSREFS

Cf. A238823-A238832.

Sequence in context: A133602 A137249 A216461 * A192921 A051769 A256400

Adjacent sequences:  A238830 A238831 A238832 * A238834 A238835 A238836

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Mar 08 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 09:05 EST 2022. Contains 350475 sequences. (Running on oeis4.)