login
A238823
a(n) = 3*a(n-1)-4*a(n-3)+a(n-4)+a(n-5)+3*a(n-6)-a(n-7) for n >= 8, with initial values as shown.
13
2, 3, 6, 14, 34, 84, 208, 515, 1272, 3138, 7734, 19055, 46940, 115631, 284846, 701709, 1728662, 4258604, 10491218, 25845514, 63671404, 156856887, 386422704, 951966378, 2345203554, 5777493461, 14233063160, 35063663603, 86380598122, 212801715171, 524244692006, 1291495687122
OFFSET
1,1
COMMENTS
Number of horizontally convex polyiamonds with n triangles.
LINKS
K. A. Van'kov, V. M. Zhuravlyov, Regular tilings and generating functions, Mat. Pros. Ser. 3, issue 22, 2018 (127-157) [in Russian]. See page 128. - N. J. A. Sloane, Jan 09 2019
Kirill Vankov, Valerii Zhuravlev, Regular and semiregular (uniform) tilings and generating functions, hal-02535947, [math.CO], 2020.
Wikipedia, Polyiamond
V. M. Zhuravlev, Horizontally-convex polyiamonds and their generating functions, Mat. Pros. 17 (2013), 107-129 (in Russian). See the sequence g(n). [Note the recurrence for g(n) in Theorem 1 contains a typo]
FORMULA
G.f.: x*(2 - 3*x - 3*x^2 + 4*x^3 + 2*x^4 + x^5 - 3*x^6) / (1 - 3*x + 4*x^3 - x^4 - x^5 - 3*x^6 + x^7). [Bruno Berselli, Mar 10 2014]
EXAMPLE
The initial values of Zhuravlev's sequences are as follows.
(The columns give n, A238829, A238828, A238824 (twice), A238830, A238833, A238832, A238825, A238831, A238827, A238826, A238823, respectively):
n a b c d i j e p q r h g
1 1 0 1 0 0 0 0 0 0 0 1 2
2 1 0 0 1 0 1 0 0 0 0 2 3
3 2 1 1 1 0 0 1 0 0 0 4 6
4 5 2 1 3 1 2 1 1 0 0 9 14
5 12 5 3 7 2 2 4 2 0 0 22 34
6 31 12 7 17 6 7 9 5 1 0 53 84
7 77 28 17 43 15 16 23 11 3 1 131 208
8 192 70 43 105 36 40 58 27 8 2 323 515
9 474 169 105 262 91 101 141 64 21 6 798 1272
MAPLE
g:=proc(n) option remember; local t1;
t1:=[2, 3, 6, 14, 34, 84, 208, 515];
if n <= 7 then t1[n] else
3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
[seq(g(n), n=1..32)];
MATHEMATICA
LinearRecurrence[{3, 0, -4, 1, 1, 3, -1}, {2, 3, 6, 14, 34, 84, 208}, 40] (* Vincenzo Librandi, Mar 10 2014 *)
PROG
(Magma) I:=[2, 3, 6, 14, 34, 84, 208, 515]; [n le 8 select I[n] else 3*Self(n-1)-4*Self(n-3)+Self(n-4)+Self(n-5)+3*Self(n-6)-Self(n-7): n in [1..40]]; // Vincenzo Librandi, Mar 10 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 08 2014
STATUS
approved