login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023878
Expansion of Product_{k>=1} (1 - x^k)^(-k^9).
7
1, 1, 513, 20196, 413668, 12444489, 372960863, 9158023846, 223763768245, 5567490203192, 132000248840652, 3018181447183141, 68165389692659690, 1512302997486058542, 32793035921825542778, 698432551205542941608, 14654522099892985823429, 302753023792981375706399
OFFSET
0,3
COMMENTS
In general, column m > 0 of A144048 is asymptotic to (Gamma(m+2)*Zeta(m+2))^((1-2*Zeta(-m))/(2*m+4)) * exp((m+2)/(m+1) * (Gamma(m+2)*Zeta(m+2))^(1/(m+2)) * n^((m+1)/(m+2)) + Zeta'(-m)) / (sqrt(2*Pi*(m+2)) * n^((m+3-2*Zeta(-m))/(2*m+4))). - Vaclav Kotesovec, Mar 01 2015
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..995 (first 301 terms from Alois P. Heinz)
G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 21.
FORMULA
a(n) ~ 3^(67/363) * 5^(67/726) * (7*Zeta(11))^(67/1452) * exp(11 * 3^(4/11) * n^(10/11) * (7*Zeta(11))^(1/11) / (2^(3/11) * 5^(9/11)) + Zeta'(-9)) / (2^(95/726) * sqrt(11*Pi) * n^(793/1452)), where Zeta(11) = A013669 = 1.00049418860411946..., Zeta'(-9) = (5*(7129/2520 - gamma - log(2*Pi))/66 + 14175*Zeta'(10) / (2*Pi^10))/10 = 0.00313014531978857275492576829... . - Vaclav Kotesovec, Feb 27 2015
G.f.: exp( Sum_{n>=1} sigma_10(n)*x^n/n ). - Seiichi Manyama, Mar 05 2017
a(n) = (1/n)*Sum_{k=1..n} sigma_10(k)*a(n-k). - Seiichi Manyama, Mar 05 2017
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*d^9, d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Nov 02 2012
MATHEMATICA
nmax=30; CoefficientList[Series[Product[1/(1-x^k)^(k^9), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 01 2015 *)
PROG
(PARI) m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^9)) \\ G. C. Greubel, Oct 31 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^9: k in [1..m]]) )); // G. C. Greubel, Oct 3012018
CROSSREFS
Column k=9 of A144048. - Alois P. Heinz, Nov 02 2012
Sequence in context: A294304 A036087 A007487 * A301553 A297494 A279642
KEYWORD
nonn
EXTENSIONS
Definition corrected by Franklin T. Adams-Watters and R. J. Mathar, Dec 04 2006
STATUS
approved