login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238411
a(n) = 2*n*floor(n/2).
2
0, 4, 6, 16, 20, 36, 42, 64, 72, 100, 110, 144, 156, 196, 210, 256, 272, 324, 342, 400, 420, 484, 506, 576, 600, 676, 702, 784, 812, 900, 930, 1024, 1056, 1156, 1190, 1296, 1332, 1444, 1482, 1600, 1640, 1764, 1806, 1936, 1980, 2116, 2162, 2304, 2352, 2500
OFFSET
1,2
COMMENTS
For n>=3, a(n) = the eccentric connectivity index of the cycle C[n] on n vertices. The eccentric connectivity index of a simple connected graph G is defined as the sum over all vertices i of G of the product E(i)D(i), where E(i) is the eccentricity and D(i) is the degree of vertex i. For example, a(6)=36 because each vertex of C[6] has degree 2 and eccentricity 3; 6*2*3 = 36.
LINKS
M. J. Morgan, S. Mukwembi and H. C. Swart, On the eccentric connectivity index of a graph, Discrete Math., 311, 2011, 1229-1234.
B. Zhou and Zh. Du, On eccentric connectivity index, Comm. Math. Comp. Chem. (MATCH), 63, 2010, 181-198.
FORMULA
From Bruno Berselli, Feb 25 2016: (Start)
G.f.: 2*x*(2 + x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = n*(2*n + (-1)^n - 1)/2.
a(n+1) = 2*A093353(n). (End)
MAPLE
a := proc (n) options operator, arrow: 2*n*floor((1/2)*n) end proc: seq(a(n), n = 1 .. 70);
MATHEMATICA
Table[2 n Floor[n/2], {n, 1, 50}] (* Bruno Berselli, Feb 25 2016 *)
PROG
(Sage) [2*n*floor(n/2) for n in (1..50)] # Bruno Berselli, Feb 25 2016
(Maxima) makelist(2*n*floor(n/2), n, 1, 50); /* Bruno Berselli, Feb 25 2016 */
(Magma) [2*n*Floor(n/2): n in [1..50]]; // Bruno Berselli, Feb 25 2016
CROSSREFS
Cf. A093353.
Sequence in context: A071428 A117988 A263636 * A304909 A302119 A120542
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Feb 27 2014
STATUS
approved