Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 08 2022 08:46:07
%S 0,4,6,16,20,36,42,64,72,100,110,144,156,196,210,256,272,324,342,400,
%T 420,484,506,576,600,676,702,784,812,900,930,1024,1056,1156,1190,1296,
%U 1332,1444,1482,1600,1640,1764,1806,1936,1980,2116,2162,2304,2352,2500
%N a(n) = 2*n*floor(n/2).
%C For n>=3, a(n) = the eccentric connectivity index of the cycle C[n] on n vertices. The eccentric connectivity index of a simple connected graph G is defined as the sum over all vertices i of G of the product E(i)D(i), where E(i) is the eccentricity and D(i) is the degree of vertex i. For example, a(6)=36 because each vertex of C[6] has degree 2 and eccentricity 3; 6*2*3 = 36.
%H M. J. Morgan, S. Mukwembi and H. C. Swart, <a href="http://dx.doi.org/10.1016/j.disc.2009.12.013">On the eccentric connectivity index of a graph</a>, Discrete Math., 311, 2011, 1229-1234.
%H B. Zhou and Zh. Du, <a href="http://match.pmf.kg.ac.rs/electronic_versions/Match63/n1/match63n1_181-198.pdf">On eccentric connectivity index</a>, Comm. Math. Comp. Chem. (MATCH), 63, 2010, 181-198.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).
%F From _Bruno Berselli_, Feb 25 2016: (Start)
%F G.f.: 2*x*(2 + x + x^2)/((1 + x)^2*(1 - x)^3).
%F a(n) = n*(2*n + (-1)^n - 1)/2.
%F a(n+1) = 2*A093353(n). (End)
%p a := proc (n) options operator, arrow: 2*n*floor((1/2)*n) end proc: seq(a(n), n = 1 .. 70);
%t Table[2 n Floor[n/2], {n, 1, 50}] (* _Bruno Berselli_, Feb 25 2016 *)
%o (Sage) [2*n*floor(n/2) for n in (1..50)] # _Bruno Berselli_, Feb 25 2016
%o (Maxima) makelist(2*n*floor(n/2), n, 1, 50); /* _Bruno Berselli_, Feb 25 2016 */
%o (Magma) [2*n*Floor(n/2): n in [1..50]]; // _Bruno Berselli_, Feb 25 2016
%Y Cf. A093353.
%K nonn,easy
%O 1,2
%A _Emeric Deutsch_, Feb 27 2014