login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238391
Expansion of (1+x)/(1-x^2-3*x^5).
2
1, 1, 1, 1, 1, 4, 4, 7, 7, 10, 19, 22, 40, 43, 70, 100, 136, 220, 265, 430, 565, 838, 1225, 1633, 2515, 3328, 5029, 7003, 9928, 14548, 19912, 29635, 40921, 59419, 84565, 119155, 173470, 241918, 351727, 495613, 709192, 1016023, 1434946, 2071204, 2921785, 4198780, 5969854, 8503618, 12183466, 17268973, 24779806
OFFSET
0,6
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 [Terms 0 through 500 were computed by G. C. Greubel]
FORMULA
a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=1; a(n) = 3*a(n-5)+a(n-2) for n>4.
a(2n) = Sum_{j=0..n/5} binomial(n-3j,2j)*3^(2j) + Sum_{j=0..(n-3)/5} binomial(n-2-3j,2j+1)*3^(2j+1).
a(2n+1) = Sum_{j=0..n/5} binomial(n-3j,2j)*3^{2j} + Sum_{j=0..(n-2)/5} binomial(n-1-3j,2j+1)*3^(2j+1).
EXAMPLE
a(5) = 3*a(0)+a(3)=4; a(6) = 3*a(1)+a(4)=4; a(7) = 3*a(2)+a(5)=7.
MATHEMATICA
For[j = 0, j < 5, j++, a[j] = 1]; For[j = 5, j < 51, j++, a[j] = 3 a[j - 5] + a[j - 2]]; Table[a[j], {j, 0, 50}]
CoefficientList[Series[(1 + x)/(1 - x^2 - 3 x^5), {x, 0, 50}], x] (* Michael De Vlieger, Jan 27 2016 *)
PROG
(PARI) Vec((1+x)/(1-x^2-3*x^5) + O(x^50)) \\ Michel Marcus, Jan 27 2016
CROSSREFS
Sequence in context: A200364 A147814 A168233 * A049647 A263619 A046538
KEYWORD
nonn,easy
AUTHOR
Sergio Falcon, Feb 26 2014
STATUS
approved