login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1+x)/(1-x^2-3*x^5).
2

%I #44 Jan 31 2016 12:19:30

%S 1,1,1,1,1,4,4,7,7,10,19,22,40,43,70,100,136,220,265,430,565,838,1225,

%T 1633,2515,3328,5029,7003,9928,14548,19912,29635,40921,59419,84565,

%U 119155,173470,241918,351727,495613,709192,1016023,1434946,2071204,2921785,4198780,5969854,8503618,12183466,17268973,24779806

%N Expansion of (1+x)/(1-x^2-3*x^5).

%H Alois P. Heinz, <a href="/A238391/b238391.txt">Table of n, a(n) for n = 0..1000</a> [Terms 0 through 500 were computed by G. C. Greubel]

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,0,3).

%F a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=1; a(n) = 3*a(n-5)+a(n-2) for n>4.

%F a(2n) = Sum_{j=0..n/5} binomial(n-3j,2j)*3^(2j) + Sum_{j=0..(n-3)/5} binomial(n-2-3j,2j+1)*3^(2j+1).

%F a(2n+1) = Sum_{j=0..n/5} binomial(n-3j,2j)*3^{2j} + Sum_{j=0..(n-2)/5} binomial(n-1-3j,2j+1)*3^(2j+1).

%e a(5) = 3*a(0)+a(3)=4; a(6) = 3*a(1)+a(4)=4; a(7) = 3*a(2)+a(5)=7.

%t For[j = 0, j < 5, j++, a[j] = 1]; For[j = 5, j < 51, j++, a[j] = 3 a[j - 5] + a[j - 2]]; Table[a[j], {j, 0, 50}]

%t CoefficientList[Series[(1 + x)/(1 - x^2 - 3 x^5), {x, 0, 50}], x] (* _Michael De Vlieger_, Jan 27 2016 *)

%o (PARI) Vec((1+x)/(1-x^2-3*x^5) + O(x^50)) \\ _Michel Marcus_, Jan 27 2016

%K nonn,easy

%O 0,6

%A _Sergio Falcon_, Feb 26 2014