

A147814


Number of bits in Elias omegacoded prime numbers.


2



4, 4, 7, 7, 8, 8, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(n) increases very slowly, gradually diverging from 3 + floor(log_2(n)).


LINKS

Indranil Ghosh, Table of n, a(n) for n = 1..10000
Wikipedia, Elias omega coding


FORMULA

a(n) = 2 + Sum_{i=0..k} d(i), where
d(0) = bits(p_n)
d(x) = bits(d(x1)1)
...
d(k) = 2,
and bits(p_n) = 1 + floor(log_2(prime(n))) is the number of bits in the binary representation of the nth prime.


CROSSREFS

Cf. A000040, A147764.
Sequence in context: A023404 A140245 A200364 * A168233 A238391 A049647
Adjacent sequences: A147811 A147812 A147813 * A147815 A147816 A147817


KEYWORD

base,easy,nonn,uned


AUTHOR

Reikku Kulon, Nov 13 2008


STATUS

approved



