login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238157
Reduced denominators of integral of the Stirling numbers of first kind.
1
1, 1, 2, 1, 2, 3, 1, 1, 1, 4, 1, 1, 3, 2, 5, 1, 1, 3, 4, 1, 6, 1, 1, 3, 4, 1, 2, 7, 1, 1, 1, 1, 1, 6, 1, 8, 1, 1, 1, 1, 5, 3, 1, 2, 9, 1, 1, 1, 1, 5, 2, 1, 4, 1, 10, 1, 1, 1, 1, 1, 2, 1, 4, 3, 2, 11, 1, 1, 1, 1, 1, 3, 1, 8, 3, 1, 1, 12
OFFSET
0,3
COMMENTS
s(n,k), signed Stirling numbers of the first kind (A048994):
1,
0, 1,
0, -1, 1,
0, 2, -3, 1,
0, -6, 11, -6, 1
etc.
The unsigned numbers, abs(s(n,k)), are the unsigned Stirling numbers of the first kind, A132393(n).
For the integration of these triangles we divide by A002260(n+1). For the first one the reduced numbers are
1,
0, 1/2,
0, -1/2, 1/3,
0, 1, -1, 1/4,
0, -3, 11/3, -3/2, 1/5,
etc.
Hence the denominators in the example.
Sums by rows: 1, 1/2, -1/6, 1/4, -19/30, 27/12 = 9/4, = (-1)^(n+1)*A141417(n)/A002790(n) = A006232(n)/A006233(n) (*).
Because the integration is between 0 and 1, the fractions appear in a numerical Adams integration with the denominators multiplied by n!, i.e., 1, 1/2, -1/12, 1/24, -19/720, 27/1440, ... . Reference, array p. 36.
(*) The Cauchy numbers of the first type or the Bernoulli numbers of the second kind.
Without signs, the row sums are 1, 1/2, 5/6, 9/4, 251/30, 475/12, ... = A002657(n)/A002790(n), Cauchy numbers of the second type. See Nørlund numbers, 1924.
REFERENCES
P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969 (see array p. 56).
N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924
FORMULA
Denominators of reduced A132393(n)/A002260(n+1).
EXAMPLE
Denominators triangle (a(n)):
1,
1, 2
1, 2, 3,
1, 1, 1, 4,
1, 1, 3, 2, 5,
1, 1, 3, 4, 1, 6,
1, 1, 3, 4, 1, 2, 7,
etc.
The Least Common Multiples are A002790. The second column is A141044(n).
MATHEMATICA
Table[StirlingS1[n, k]/(k+1) // Denominator, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2014 *)
CROSSREFS
Cf. A091137.
Sequence in context: A273137 A362947 A246064 * A272210 A273132 A294859
KEYWORD
nonn,frac
AUTHOR
Paul Curtz, Feb 18 2014
STATUS
approved