login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A237851 a(1)=1; a(n) is the smallest integer not yet in the sequence divisible by all nonzero digits of a(n-1). 3
1, 2, 4, 8, 16, 6, 12, 10, 3, 9, 18, 24, 20, 14, 28, 32, 30, 15, 5, 25, 40, 36, 42, 44, 48, 56, 60, 54, 80, 64, 72, 70, 7, 21, 22, 26, 66, 78, 112, 34, 84, 88, 96, 90, 27, 98, 144, 52, 50, 35, 45, 100, 11, 13, 33, 39, 63, 102, 38, 120, 46, 108, 104, 68, 168 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A permutation of the naturals with inverse A237860.

If a(n) is a prime greater than 7 then no digit of a(n-1) is greater than 1, cf. A007088.

LINKS

Lars Blomberg and Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Index entries for sequences that are permutations of the natural numbers

MATHEMATICA

a[1] = 1;

a[n_] := a[n] = For[k = 1, True, k++, If[FreeQ[Array[a, n-1], k], If[ AllTrue[Select[IntegerDigits[a[n-1]], #>0&] // Union, Divisible[k, #]&], Return[k]]]];

a /@ Range[100] (* Jean-Fran├žois Alcover, Nov 26 2019 *)

PROG

(Haskell)

import Data.List (nub, sort, delete)

a237851 n = a237851_list !! (n-1)

a237851_list = 1 : f 1 [2..] where

   f x zs = g zs where

     g (u:us) | all ((== 0) . (mod u)) ds = u : f u (delete u zs)

              | otherwise = g us

              where ds = dropWhile (<= 1) $

                         sort $ nub $ map (read . return) $ show x

-- Reinhard Zumkeller, Feb 14 2014

CROSSREFS

Cf. A002796, A180410, A002473, A237860, A007088.

Sequence in context: A127824 A088975 A306601 * A167425 A212638 A016018

Adjacent sequences:  A237848 A237849 A237850 * A237852 A237853 A237854

KEYWORD

nonn,base,nice,look

AUTHOR

Eric Angelini, Feb 14 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 4 02:24 EDT 2021. Contains 346441 sequences. (Running on oeis4.)