login
A378107
Lexicographically earliest sequence of distinct positive integers such that for any n > 0, either a(n+1) is a multiple of a(n) or the decimal expansion of a(n+1) appears in that of a(n).
2
1, 2, 4, 8, 16, 6, 12, 24, 48, 96, 9, 18, 36, 3, 15, 5, 10, 20, 40, 80, 160, 60, 120, 240, 480, 960, 1920, 19, 38, 76, 7, 14, 28, 56, 112, 11, 22, 44, 88, 176, 17, 34, 68, 136, 13, 26, 52, 104, 208, 416, 41, 82, 164, 64, 128, 256, 25, 50, 100, 200, 400, 800
OFFSET
1,2
COMMENTS
Will every integer appear in the sequence?
LINKS
Rémy Sigrist, PARI program
EXAMPLE
The first terms are:
n a(n)
-- ----
1 1
2 2
3 4
4 8
5 16
6 6 (6 appears in 16)
7 12
8 24
9 48
10 96
11 9 (9 appears in 96)
12 18
13 36
14 3 (3 appears in 36)
15 15
PROG
(PARI) \\ See Links section.
(Python)
from itertools import combinations, count, islice
def agen(): # generator of terms
an, aset = 1, {0, 1}
while True:
yield an
s = str(an)
subs = (int(s[i:j]) for i, j in combinations(range(len(s)+1), 2))
an1 = min((t for t in subs if t not in aset), default=-1)
if an1 == -1:
an = next(k*an for k in count(2) if k*an not in aset)
else:
an = an1
aset.add(an)
print(list(islice(agen(), 62))) # Michael S. Branicky, Nov 17 2024
CROSSREFS
See A342072 and A378106 for similar sequences.
Sequence in context: A306601 A237851 A167425 * A212638 A016018 A333492
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Nov 16 2024
STATUS
approved