login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237716
7-distance Pell sequence.
3
1, 1, 1, 1, 1, 1, 1, 3, 3, 5, 5, 7, 7, 9, 13, 15, 23, 25, 37, 39, 55, 65, 85, 111, 135, 185, 213, 295, 343, 465, 565, 735, 935, 1161, 1525, 1847, 2455, 2977, 3925, 4847, 6247, 7897, 9941, 12807, 15895, 20657, 25589, 33151, 41383, 53033, 66997
OFFSET
0,8
FORMULA
a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=1; a(n) = 2*a(n-7) + a(n-2) for n>=7.
G.f.: (1 + x)/(1 - x^2 - 2*x^7).
a(2*n) = Sum_{j=0..n/7} binomial(n-5*j, 2*j)*2^(2*j) + Sum_{j=0..(n-4)/7} binomial(n-3-5*j, 2*j+1)*2^(2*j+1).
a(2*n+1) = Sum_{j=0..n/7} binomial(n-5*j, 2*j)*2^(2*j) + Sum_{j=0..(n-3)/7} binomial(n-2-5*j, 2*j+1)*2^(2*j+1).
EXAMPLE
a(7)=2a(0)+a(5)=3; a(8)=2a(1)+a(6)=3; a(9)=2a(2)+a(7)=5.
MATHEMATICA
For[j = 0, j < 7, j++, a[j] = 1]
For[j = 7, j < 51, j++, a[j] = 2 a[j - 7] + a[j - 2]]
Table[a[j], {j, 0, 50}]
CoefficientList[Series[(1 + x)/(1 - x^2 - 2 x^7), {x, 0, 50}], x] (* G. C. Greubel, May 01 2017 *)
PROG
(PARI) Vec((1+x)/(1-x^2-2*x^7)+O(x^99)) \\ Charles R Greathouse IV, Mar 06 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Sergio Falcon, Feb 12 2014
STATUS
approved