OFFSET
0,8
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,0,0,2).
FORMULA
a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=1; a(n) = 2*a(n-7) + a(n-2) for n>=7.
G.f.: (1 + x)/(1 - x^2 - 2*x^7).
a(2*n) = Sum_{j=0..n/7} binomial(n-5*j, 2*j)*2^(2*j) + Sum_{j=0..(n-4)/7} binomial(n-3-5*j, 2*j+1)*2^(2*j+1).
a(2*n+1) = Sum_{j=0..n/7} binomial(n-5*j, 2*j)*2^(2*j) + Sum_{j=0..(n-3)/7} binomial(n-2-5*j, 2*j+1)*2^(2*j+1).
EXAMPLE
a(7)=2a(0)+a(5)=3; a(8)=2a(1)+a(6)=3; a(9)=2a(2)+a(7)=5.
MATHEMATICA
For[j = 0, j < 7, j++, a[j] = 1]
For[j = 7, j < 51, j++, a[j] = 2 a[j - 7] + a[j - 2]]
Table[a[j], {j, 0, 50}]
CoefficientList[Series[(1 + x)/(1 - x^2 - 2 x^7), {x, 0, 50}], x] (* G. C. Greubel, May 01 2017 *)
PROG
(PARI) Vec((1+x)/(1-x^2-2*x^7)+O(x^99)) \\ Charles R Greathouse IV, Mar 06 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Sergio Falcon, Feb 12 2014
STATUS
approved